搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度循环对硅通孔绝缘层漏电机制的影响研究

任云坤 陈思 秦飞

引用本文:
Citation:

温度循环对硅通孔绝缘层漏电机制的影响研究

任云坤, 陈思, 秦飞

Investigation of the effects of temperature cycling on the leakage mechanism of Through-Silicon Via (TSV) insulation layer

Ren Yun-Kun, Chen Si, Qin Fei
PDF
导出引用
  • 硅通孔(TSV)作为实现三维集成电路互连的关键技术,其侧壁界面的完整性对TSV的漏电特性至关重要。本文开展了温度循环实验,结合漏电流I-V测试、微观结构观察和EDS元素分析,分析了温度循环对TSV侧壁界面完整性及对绝缘层漏电机制的影响。研究表明,随着温度循环次数的增加,TSV阻挡层的完整性逐渐降低,漏电流显著增加,绝缘层的漏电机制从肖特基发射机制转变为肖特基发射与Poole-Frenkel发射机制共同作用,这种转变在高电场条件下更为显著。进一步的TSV界面完整性分析表明,温度循环引起的热机械应力导致了TSV填充铜与阻挡层界面间缺陷产生,这些缺陷促进铜原子扩散到绝缘层,形成漏电路径,是导致绝缘层介电性能下降的主要原因之一。
    Through-silicon via (TSV), as a key technology for realizing interconnections in three-dimensional integrated circuits (3D ICs), critically depends on the integrity of its sidewall interfaces to maintain optimal leakage characteristics. This study conducted temperature cycling experiments, incorporating leakage current I-V testing, microstructural observations, and EDS elemental analysis to evaluate the effects of temperature cycling on the integrity of TSV sidewall interfaces and the leakage mechanisms in the insulation layer. The results indicate that, as the number of temperature cycles increases, the alternating cyclic loads progressively degrade the integrity of the TSV barrier layer, transitioning from an intact interface to the formation of micro-voids and micro-cracks. This results in a significant increase in leakage current. When through-thickness cracks appear at the interface, a sudden decrease in leakage current occurs. The TSV failure mode shifts from thermally induced leakage to mechanical cracking. The leakage mechanism of the insulation layer transitions from the Schottky emission mechanism (Cycle ≤ 60) to a combination of Schottky emission and Poole-Frenkel emission mechanisms (Cycle ≥ 90), and this shift becomes more pronounced under high electric field conditions. Further analysis of TSV interface integrity reveals that thermomechanical stress induced by temperature cycling generates defects at the interface between the TSV copper fill and the barrier layer. As thermally induced defects accumulate, the barrier height of the insulation layer continuously decreases, making it easier for electrons in the metal to overcome the Schottky barrier under thermal and electric field excitation, thereby forming leakage currents. Moreover, these defects facilitate the diffusion of copper atoms into the insulation layer, resulting in the formation of localized high electric field regions. These high-field regions in the insulation layer increase electron emission rates through the Poole-Frenkel emission mechanism, creating leakage paths. Therefore, copper diffusion emerges as one of the primary causes of dielectric performance degradation in the insulation layer.
  • [1]

    Wang Y, Liu H, Huo L, Li H, Tian W, Ji H, Chen S 2024 Micromachines 15 422

    [2]

    Jang Y J, Sharma A, Jung J P 2023 Materials 16 7652

    [3]

    Dong G, Wu W S, Yang Y T 2015 Acta Phys. Sin. 64 026601(in Chinese)[董刚,武文珊,杨银堂2015物理学报64 026601]

    [4]

    Dong G, Liu D, Shi T, Yang Y T 2015Acta Phys. Sin. 64 176601(in Chinese)[董刚,刘荡,石涛,杨银堂2015物理学报64 176601]

    [5]

    Fan Z, Chen X, Wang Y, Jiang Y, Zhang S 2022 Microelectron. Reliab. 138 114643

    [6]

    Kumari V, Chandrakar S, Verma S, Majumder M K 2023IEEE Trans. Compon. Packag. Manuf. Technol. 13 1734

    [7]

    Chan J M, Lee K C, Tan C S 2018IEEE Trans. Device Mater. Reliab. 18 520

    [8]

    Chan J M, Cheng X, Lee K C, Kanert W, Tan C S 2017IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, April 2–6, 2017 p4A

    [9]

    Chandrakar M, Majumder M K 2022IEEE Trans. Compon. Packag. Manuf. Technol. 12 1832

    [10]

    Gong T,Xie L,Chen S,Lu X,Zhao M,Zhu J,Yang X,Wang Z 2024Crystals 14 37

    [11]

    Shen Z, Jing S, Heng Y, Yao Y, Tu K N, Liu Y 2023Appl. Phys. Rev. 10 2

    [12]

    Nakamura T, Kitada H, Mizushima Y, Maeda N, Fujimoto K, Ohba T 2012IEEE 2011 International 3D Systems Integration Conference (3DIC) Osaka, Japan, January 31–February 2, 2012 p1

    [13]

    Ranganathan N, Lee D Y, Youhe L, Lo G Q, Prasad K, Pey K L 2011IEEE Trans. Compon. Packag. Manuf. Technol. 1 1497

    [14]

    Lin Y, Tan C S 2018Jpn. J. Appl. Phys. 57 07MF01

    [15]

    Chen S, Jian X D, Li K, Li G Y, Wang Z Z, Yang X F, Wang H Y, Fu Z W 2023Microelectron. Reliab. 141 114889

    [16]

    Hung J F, Lau J H, Chen P S, Wu S H, Lai S J, Li M L, Sheu S S, Tzeng P J, Lin Z H, Ku T K, Lo W C, Kao M J 2012IEEE 62nd Electronic Components and Technology Conference(ECTC) San Diego, CA, May 29–June 1, 2012 p564

    [17]

    Krause M, Altmann F, Schmidt C, Petzold M, Malta D, Temple D 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, FL, May 31–June 3, 2011 p1452

    [18]

    Chiu F C 2014Adv. Mater. Sci. Eng. 2014 578168

    [19]

    Fowler R H, Nordheim L 1928Proc. R. Soc. London, Ser. A 119 173

    [20]

    Frenkel J 1938Phys. Rev. 54 647

    [21]

    Schottky W 1939Z. Phys. 113 367

  • [1] 马鑫, 芦宾, 董林鹏, 苗渊浩. 基于混合导电机制的新型TMOSFET三值逻辑反相器. 物理学报, doi: 10.7498/aps.72.20230819
    [2] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, doi: 10.7498/aps.70.20210747
    [3] 苑博, 税国双, 汪越胜. 循环温度疲劳作用下粘接界面损伤的非线性超声评价. 物理学报, doi: 10.7498/aps.67.20172265
    [4] 符民, 文尚胜, 夏云云, 向昌明, 马丙戌, 方方. GaN基通孔垂直结构的发光二极管失效分析. 物理学报, doi: 10.7498/aps.66.048501
    [5] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, doi: 10.7498/aps.65.060201
    [6] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究. 物理学报, doi: 10.7498/aps.65.030501
    [7] 董刚, 武文珊, 杨银堂. 三维集成电路堆叠硅通孔动态功耗优化. 物理学报, doi: 10.7498/aps.64.026601
    [8] 董刚, 刘荡, 石涛, 杨银堂. 多个硅通孔引起的热应力对迁移率和阻止区的影响. 物理学报, doi: 10.7498/aps.64.176601
    [9] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制. 物理学报, doi: 10.7498/aps.63.127501
    [10] 钱利波, 朱樟明, 杨银堂. 一种考虑硅通孔电阻-电容效应的三维互连线模型. 物理学报, doi: 10.7498/aps.61.068001
    [11] 朱樟明, 左平, 杨银堂. 考虑硅通孔的三维集成电路热传输解析模型. 物理学报, doi: 10.7498/aps.60.118001
    [12] 朱樟明, 郝报田, 钱利波, 钟波, 杨银堂. 考虑通孔效应和边缘传热效应的纳米级互连线温度分布模型. 物理学报, doi: 10.7498/aps.58.7130
    [13] 吴振宇, 杨银堂, 柴常春, 李跃进, 汪家友, 刘 彬. 通孔尺寸对铜互连应力迁移失效的影响. 物理学报, doi: 10.7498/aps.57.3730
    [14] 王彦刚, 许铭真, 谭长华, 段小蓉. 超薄栅氧化层n-MOSFET软击穿后的导电机制. 物理学报, doi: 10.7498/aps.54.3884
    [15] 许海军, 富笑男, 孙新瑞, 李新建. 硅纳米孔柱阵列的结构和光学特性研究. 物理学报, doi: 10.7498/aps.54.2352
    [16] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制. 物理学报, doi: 10.7498/aps.49.1798
    [17] 刘小兵, 熊祖洪, 袁 帅, 陈彦东, 何 钧, 廖良生, 丁训民, 侯晓远. 多孔硅光致发光的温度效应研究. 物理学报, doi: 10.7498/aps.47.1391
    [18] 赵理曾, 马啸, 秦勇, 卢振中, 聂玉昕, 王夺元, 胡敏学. 光子选通光谱烧孔的全息检测与图像存贮. 物理学报, doi: 10.7498/aps.46.1487
    [19] 林军, 张丽珠, 陈志坚, 宋海智, 姚德成, 段家忯, 傅济时, 张伯蕊, 秦国刚. 多孔硅蓝光发射与发光机制. 物理学报, doi: 10.7498/aps.45.121
    [20] 黄桐凯, 中村哲朗. BaSn1-xSbxO3-δ和Ba1-yLaySnO3-δ的导电机制. 物理学报, doi: 10.7498/aps.43.1840
计量
  • 文章访问数:  30
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回