-
硅通孔(TSV)作为实现三维集成电路互连的关键技术,其侧壁界面的完整性对TSV的漏电特性至关重要。本文开展了温度循环实验,结合漏电流I-V测试、微观结构观察和EDS元素分析,分析了温度循环对TSV侧壁界面完整性及对绝缘层漏电机制的影响。研究表明,随着温度循环次数的增加,TSV阻挡层的完整性逐渐降低,漏电流显著增加,绝缘层的漏电机制从肖特基发射机制转变为肖特基发射与Poole-Frenkel发射机制共同作用,这种转变在高电场条件下更为显著。进一步的TSV界面完整性分析表明,温度循环引起的热机械应力导致了TSV填充铜与阻挡层界面间缺陷产生,这些缺陷促进铜原子扩散到绝缘层,形成漏电路径,是导致绝缘层介电性能下降的主要原因之一。Through-silicon via (TSV), as a key technology for realizing interconnections in three-dimensional integrated circuits (3D ICs), critically depends on the integrity of its sidewall interfaces to maintain optimal leakage characteristics. This study conducted temperature cycling experiments, incorporating leakage current I-V testing, microstructural observations, and EDS elemental analysis to evaluate the effects of temperature cycling on the integrity of TSV sidewall interfaces and the leakage mechanisms in the insulation layer. The results indicate that, as the number of temperature cycles increases, the alternating cyclic loads progressively degrade the integrity of the TSV barrier layer, transitioning from an intact interface to the formation of micro-voids and micro-cracks. This results in a significant increase in leakage current. When through-thickness cracks appear at the interface, a sudden decrease in leakage current occurs. The TSV failure mode shifts from thermally induced leakage to mechanical cracking. The leakage mechanism of the insulation layer transitions from the Schottky emission mechanism (Cycle ≤ 60) to a combination of Schottky emission and Poole-Frenkel emission mechanisms (Cycle ≥ 90), and this shift becomes more pronounced under high electric field conditions. Further analysis of TSV interface integrity reveals that thermomechanical stress induced by temperature cycling generates defects at the interface between the TSV copper fill and the barrier layer. As thermally induced defects accumulate, the barrier height of the insulation layer continuously decreases, making it easier for electrons in the metal to overcome the Schottky barrier under thermal and electric field excitation, thereby forming leakage currents. Moreover, these defects facilitate the diffusion of copper atoms into the insulation layer, resulting in the formation of localized high electric field regions. These high-field regions in the insulation layer increase electron emission rates through the Poole-Frenkel emission mechanism, creating leakage paths. Therefore, copper diffusion emerges as one of the primary causes of dielectric performance degradation in the insulation layer.
-
Keywords:
- through silicon via /
- leakage mechanism /
- temperature cycling
-
[1] Wang Y, Liu H, Huo L, Li H, Tian W, Ji H, Chen S 2024 Micromachines 15 422
[2] Jang Y J, Sharma A, Jung J P 2023 Materials 16 7652
[3] Dong G, Wu W S, Yang Y T 2015 Acta Phys. Sin. 64 026601(in Chinese)[董刚,武文珊,杨银堂2015物理学报64 026601]
[4] Dong G, Liu D, Shi T, Yang Y T 2015Acta Phys. Sin. 64 176601(in Chinese)[董刚,刘荡,石涛,杨银堂2015物理学报64 176601]
[5] Fan Z, Chen X, Wang Y, Jiang Y, Zhang S 2022 Microelectron. Reliab. 138 114643
[6] Kumari V, Chandrakar S, Verma S, Majumder M K 2023IEEE Trans. Compon. Packag. Manuf. Technol. 13 1734
[7] Chan J M, Lee K C, Tan C S 2018IEEE Trans. Device Mater. Reliab. 18 520
[8] Chan J M, Cheng X, Lee K C, Kanert W, Tan C S 2017IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, April 2–6, 2017 p4A
[9] Chandrakar M, Majumder M K 2022IEEE Trans. Compon. Packag. Manuf. Technol. 12 1832
[10] Gong T,Xie L,Chen S,Lu X,Zhao M,Zhu J,Yang X,Wang Z 2024Crystals 14 37
[11] Shen Z, Jing S, Heng Y, Yao Y, Tu K N, Liu Y 2023Appl. Phys. Rev. 10 2
[12] Nakamura T, Kitada H, Mizushima Y, Maeda N, Fujimoto K, Ohba T 2012IEEE 2011 International 3D Systems Integration Conference (3DIC) Osaka, Japan, January 31–February 2, 2012 p1
[13] Ranganathan N, Lee D Y, Youhe L, Lo G Q, Prasad K, Pey K L 2011IEEE Trans. Compon. Packag. Manuf. Technol. 1 1497
[14] Lin Y, Tan C S 2018Jpn. J. Appl. Phys. 57 07MF01
[15] Chen S, Jian X D, Li K, Li G Y, Wang Z Z, Yang X F, Wang H Y, Fu Z W 2023Microelectron. Reliab. 141 114889
[16] Hung J F, Lau J H, Chen P S, Wu S H, Lai S J, Li M L, Sheu S S, Tzeng P J, Lin Z H, Ku T K, Lo W C, Kao M J 2012IEEE 62nd Electronic Components and Technology Conference(ECTC) San Diego, CA, May 29–June 1, 2012 p564
[17] Krause M, Altmann F, Schmidt C, Petzold M, Malta D, Temple D 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, FL, May 31–June 3, 2011 p1452
[18] Chiu F C 2014Adv. Mater. Sci. Eng. 2014 578168
[19] Fowler R H, Nordheim L 1928Proc. R. Soc. London, Ser. A 119 173
[20] Frenkel J 1938Phys. Rev. 54 647
[21] Schottky W 1939Z. Phys. 113 367
计量
- 文章访问数: 30
- PDF下载量: 0
- 被引次数: 0