搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究

刘厚盛 郭世峰 陈明 张国凯 郭崇 高学栋 蔚翠

引用本文:
Citation:

微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究

刘厚盛, 郭世峰, 陈明, 张国凯, 郭崇, 高学栋, 蔚翠
cstr: 32037.14.aps.74.20241438

High-concentration diamond nitrogen vacancy color center fabricated by microwave plasma chemical vapor deposition and its properties

LIU Housheng, GUO Shifeng, CHEN Ming, ZHANG Guokai, GUO Chong, GAO Xuedong, YU Cui
cstr: 32037.14.aps.74.20241438
PDF
HTML
导出引用
  • 金刚石氮-空位(NV)色心在室温下稳定性好, 电子自旋相干时间长, 能被激光和微波操控, 是量子探测领域最具潜力的结构. 本研究采用微波等离子化学气相沉积法(MPCVD)制备具有较高氮含量的金刚石单晶, 以构建高浓度NV色心. 通过在前驱体气体中掺杂不同含量的氮原子, 解决了高氮条件下长时间生长金刚石单晶出现的诸多问题, 制备氮含量约为0.205, 5, 8, 11, 15, 36和54 ppm (1 ppm = 10–6)的高氮金刚石单晶. 初步确定了前驱体气体中氮含量与进入到金刚石单晶晶格中氮含量的关系平均约为11, 氮原子在金刚石单晶中主要以聚集态氮和单个替位N+形式存在. 对高氮金刚石单晶进行电子辐照, 显著提升了金刚石NV色心浓度, 并对辐照后NV色心材料的磁探测性能进行验证.
    Diamond nitrogen vacancy (NV) color centers have good stability at room temperature and long electron spin coherence time, and can be manipulated by lasers and microwaves, thereby becoming the most promising structure in the field of quantum detection. Within a certain range, the higher the concentration of NV color centers, the higher the sensitivity of detecting physical quantities is. Therefore, it is necessary to dope sufficient nitrogen atoms into diamond single crystals to form high-concentration NV color centers. In this study, diamond single crystals with different nitrogen content are prepared by microwave plasma chemical vapor deposition (MPCVD) to construct high-concentration NV color centers. By doping different amounts of nitrogen atoms into the precursor gas, many problems encountered during long-time growth of diamond single crystals under high nitrogen conditions are solved. Diamond single crystals with nitrogen content of about 0.205, 5, 8, 11, 15, 36, and 54 ppm (1 ppm = 10–6) are prepared. As the nitrogen content increases, the width of the step flow on the surface of the diamond single crystal gradually widens, eventually the step flow gradually disappears and the surface becomes smooth. Under the experimental conditions in this study, it is preliminarily determined that the average ratio of the nitrogen content in the precursor gas to the nitrogen atom content introduced into the diamond single crystal lattice is about 11. Fourier transform infrared spectroscopy shows that as the nitrogen content inside the CVD diamond single crystal increases, the density of vacancy defects also increases. Therefore, the color of CVD high nitrogen diamond single crystals ranges from light brown to brownish black. Compared with HPHT diamond single crystal, the CVD high nitrogen diamond single crystal has a weak intensity of absorption peak at 1130 cm–1 and no absorption peak at 1280 cm–1. Three obvious nitrogen-related absorption peaks at 1371, 1353, and 1332 cm–1 of the CVD diamond single crystal are displayed. Nitrogen atoms mainly exist in the form of aggregated nitrogen and single substitutional N+ in diamond single crystals, rather than in the form of C-defect. The PL spectrum results show that defects such as vacancies inside the diamond single crystal with nitrogen content of 54 ppm are significantly increased after electron irradiation, leading to a remarkable increase in the concentration of NV color centers. The magnetic detection performance of the NV color center material after irradiation is verified, and the fluorescence intensity is uniformly distributed in the sample surface. The diamond single crystal with nitrogen content of 54 ppm has good microwave spin manipulation, and its longitudinal relaxation time is about 3.37 ms.
      通信作者: 刘厚盛, hsliu_cvddiamond@163.com ; 蔚翠, yucui1@163.com
      Corresponding author: LIU Housheng, hsliu_cvddiamond@163.com ; YU Cui, yucui1@163.com
    [1]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [2]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [3]

    Acosta V, Hemmer P 2013 MRS Bull. 38 127Google Scholar

    [4]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond & Abrasives Engineering 40 42Google Scholar

    [5]

    刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳 2023 激光与光电子学进展 60 11Google Scholar

    Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023 Laser Optoelectron. P. 60 11Google Scholar

    [6]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [7]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [8]

    Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023 Diam. Relat. Mater. 139 110348Google Scholar

    [9]

    李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊 2021 物理学报 70 147601Google Scholar

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021 Acta Phys. Sin. 70 147601Google Scholar

    [10]

    Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023 Diam. Relat. Mater. 140 110472Google Scholar

    [11]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 128101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 128101Google Scholar

    [12]

    李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984Google Scholar

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984Google Scholar

    [13]

    李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 物理学报 65 118103Google Scholar

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar

    [14]

    Kanda H, Akaishi M, Yamaoka S 1999 Diam. Relat. Mater. 8 1441Google Scholar

    [15]

    Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020 Diam. Relat. Mater. 105 107794Google Scholar

    [16]

    李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar

    [17]

    刘志杰, 张卫, 张剑云, 万永中, 王季陶 1999 无机材料学报 14 114Google Scholar

    Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999 J. Inor. mater. 14 114Google Scholar

    [18]

    李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪 2021 人工晶体学报 50 0158Google Scholar

    Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021 J. Synthetic Cryst. 50 0158Google Scholar

    [19]

    Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023 Phys. Status Solidi (a) 220 2200299Google Scholar

    [20]

    梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039Google Scholar

    Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039Google Scholar

    [21]

    颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101Google Scholar

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101Google Scholar

    [22]

    吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢 2021 地球学报 42 895Google Scholar

    Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol. Sin. 42 895Google Scholar

    [23]

    Howell C, O’Neill C J, Grant K J, Griffin W L, O’Reilly S Y, Pearson N J, Stern R A, Stachel T 2012 Contrib. Mineral Petr. 164 1011Google Scholar

    [24]

    Lawson S C, Fisher D, Hunt D C, Newton M E 1998 J. Phys. Condens. Matter. 10 6171Google Scholar

    [25]

    Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021 Diam. Relat. Mater. 118 108511Google Scholar

    [26]

    Jones R 2009 Diam. Relat. Mater. 18 820Google Scholar

    [27]

    李荣斌 2007 物理学报 56 395Google Scholar

    Li R B 2007 Acta Phys. Sin. 56 395Google Scholar

    [28]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

  • 图 1  金刚石单晶生长缺陷 (a)局部翘起; (b)多晶; (c)裂纹; (d)裂缝

    Fig. 1.  Growth defect of diamond single crystals: (a) Local warped crystal faces; (b) polycrystalline; (c) cracks; (d) crevice.

    图 2  不同氮含量金刚石单晶表面形貌和实物图 (a) 1号; (b) 2号; (c) 3号; (d) 4号; (e) 5号; (f) 6号; (g) 7号; (h)样品实物图

    Fig. 2.  Surface morphologies and pictures of different nitrogen content diamond single crystals: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6; (g) Sample 7; (h) pictures of different samples.

    图 3  不同氮含量金刚石单晶生长速度

    Fig. 3.  Growth speeds of different nitrogen content diamond single crystals.

    图 4  不同参数制备的金刚石单晶氮含量

    Fig. 4.  Nitrogen contents of different diamond single crystals.

    图 5  HPHT法制备的高氮金刚石单晶实物图

    Fig. 5.  Pictures of high nitrogen content diamond single crystal prepared by HPHT methods.

    图 6  金刚石单晶样品红外光谱

    Fig. 6.  FTIR spectra of diamond single cyrstals.

    图 7  样品辐照前后PL光谱

    Fig. 7.  PL spectra of diamond single cyrstals before and after irradiation.

    图 8  (a)测试示意图; (b)荧光Mapping; (c)不同微波功率下的ODMR曲线; (d)施加偏置磁场后的ODMR曲线; (e)拉比振荡曲线; (f)纵向弛豫时间

    Fig. 8.  (a) Test schematic diagram; (b) fluorescence Mapping; (c) ODMR curves at different microwave powers; (d) ODMR curve after applying a biased magnetic field; (e) Rabi oscillation curve; (f) longitudinal relaxation time.

    表 1  生长工艺参数(1 Torr = 1.33 × 102 Pa)

    Table 1.  Growth process parameters (1 Torr = 1.33 × 102 Pa).

    样品编号CH4/sccmH2/sccmN 掺杂量/ppmO2/sccm微波功率/kW生长压力/Torr生长温度/℃生长时间/h
    1930030.85180880100
    29300600.85180880100
    39300900.85180880100
    493001200.85180880100
    593001500.85180880100
    693003500.85180880100
    793004800.85180880100
    下载: 导出CSV
  • [1]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [2]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [3]

    Acosta V, Hemmer P 2013 MRS Bull. 38 127Google Scholar

    [4]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond & Abrasives Engineering 40 42Google Scholar

    [5]

    刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳 2023 激光与光电子学进展 60 11Google Scholar

    Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023 Laser Optoelectron. P. 60 11Google Scholar

    [6]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [7]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [8]

    Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023 Diam. Relat. Mater. 139 110348Google Scholar

    [9]

    李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊 2021 物理学报 70 147601Google Scholar

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021 Acta Phys. Sin. 70 147601Google Scholar

    [10]

    Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023 Diam. Relat. Mater. 140 110472Google Scholar

    [11]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 128101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 128101Google Scholar

    [12]

    李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984Google Scholar

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984Google Scholar

    [13]

    李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 物理学报 65 118103Google Scholar

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar

    [14]

    Kanda H, Akaishi M, Yamaoka S 1999 Diam. Relat. Mater. 8 1441Google Scholar

    [15]

    Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020 Diam. Relat. Mater. 105 107794Google Scholar

    [16]

    李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar

    [17]

    刘志杰, 张卫, 张剑云, 万永中, 王季陶 1999 无机材料学报 14 114Google Scholar

    Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999 J. Inor. mater. 14 114Google Scholar

    [18]

    李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪 2021 人工晶体学报 50 0158Google Scholar

    Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021 J. Synthetic Cryst. 50 0158Google Scholar

    [19]

    Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023 Phys. Status Solidi (a) 220 2200299Google Scholar

    [20]

    梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039Google Scholar

    Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039Google Scholar

    [21]

    颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101Google Scholar

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101Google Scholar

    [22]

    吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢 2021 地球学报 42 895Google Scholar

    Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol. Sin. 42 895Google Scholar

    [23]

    Howell C, O’Neill C J, Grant K J, Griffin W L, O’Reilly S Y, Pearson N J, Stern R A, Stachel T 2012 Contrib. Mineral Petr. 164 1011Google Scholar

    [24]

    Lawson S C, Fisher D, Hunt D C, Newton M E 1998 J. Phys. Condens. Matter. 10 6171Google Scholar

    [25]

    Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021 Diam. Relat. Mater. 118 108511Google Scholar

    [26]

    Jones R 2009 Diam. Relat. Mater. 18 820Google Scholar

    [27]

    李荣斌 2007 物理学报 56 395Google Scholar

    Li R B 2007 Acta Phys. Sin. 56 395Google Scholar

    [28]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

  • [1] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术. 物理学报, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [2] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [6] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [7] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [8] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰. 基于金刚石固态单自旋的纳米尺度零场探测. 物理学报, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [9] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [10] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化. 物理学报, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [11] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [12] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [13] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [14] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究. 物理学报, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [15] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [16] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究. 物理学报, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [17] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [18] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [19] 刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军. 基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究. 物理学报, 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [20] 辛煜, 宁兆元, 甘肇强, 陆新华, 方亮, 程珊华. 不同CHF3/CH4流量比下沉积a-C∶F∶H薄膜键结构的红外分析. 物理学报, 2001, 50(12): 2492-2496. doi: 10.7498/aps.50.2492
计量
  • 文章访问数:  438
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-15
  • 修回日期:  2024-11-13
  • 上网日期:  2024-12-10

/

返回文章
返回