搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弧度与旋转共同诱导相位调控太赫兹超表面

蒋铭阳 李九生

引用本文:
Citation:

弧度与旋转共同诱导相位调控太赫兹超表面

蒋铭阳, 李九生
cstr: 32037.14.aps.74.20241465

Radian and rotation co-induced phase controlling terahertz metasurfaces

JIANG Mingyang, LI Jiusheng
cstr: 32037.14.aps.74.20241465
PDF
HTML
导出引用
  • 传统编码超表面都是按照几何相位或传输相位理论来实现相位调控的, 然而几何相位具有自旋锁定特性, 传输相位具有单频特性, 限制了利用统一超表面同时调控几何相位和传输相位. 本文提出了一种弧度与旋转共同诱导相位调控超表面, 超表面单元能对左旋圆极化波(LCP波)和右旋圆极化波(RCP波)的交叉极化反射相位进行独立调控, 在1—1.2 THz范围内均满足要求. 通过相位卷积与共享孔径原理, 该超表面可以实现多通道涡旋、聚焦、完美涡旋等功能, 提高了电磁空间的利用率, 在未来太赫兹通信系统中具有广阔的应用前景.
    Metasurfaces have the characteristics of simple structure, easy fabrication, easy integration, etc., and can flexibly control electromagnetic waves. They are widely used in terahertz filters, lenses, polarization converters, wavefront adjustment and terahertz imaging and so on. By encoding and arranging unit cells with different amplitudes and phases according to a certain rule, the metasurfaces can achieve various functions such as imaging, focusing, beam splitting, and vortex beam. The reported coding metasurfaces are phase-modulated according to geometric phase or transmission phase theory. However, geometric phase has spin-locking property and transmission phase has single-frequency property, which hinder the applications of a unified metasurface in simultaneously regulating geometric phase and transmission phase.To address the above issues, in this work, we propose an radian and rotation co-induced phase modulation metasurface, whose unit cell independently modulates the cross-polarized reflection phases of LCP wave and RCP wave and has a certain bandwidth, which meets therequirement in a frequency region of 1–1.2 THz. Through the principle of phase convolution and shared aperture, the metasurface realizes the vortex beams with a topological charge of ±1, focusing with a focal length of 1500 μm, the deflected vortex beams with a topological charge of ±2, the quasi-perfect vortex beams, and the multichannel vortex beams. The structure has the advantages of simple structure, flexible and convenient regulation, and compact size, which improves the utilization of the electromagnetic space and has a broad application prospect in the future terahertz communication systems.
      通信作者: 李九生, lijsh2008@126.com
    • 基金项目: 国家自然科学基金(批准号: 62271460)和浙江省自然科学基金(批准号: LZ24F050005) 资助的课题.
      Corresponding author: LI Jiusheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271460) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ24F050005).
    [1]

    Feng C H, Otani C 2021 Crit. Rev. Food Sci. Nutr. 61 2523Google Scholar

    [2]

    Song Z Y, Chen A P, Zhang J H 2020 Opt. Express 28 2037Google Scholar

    [3]

    Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z, Zhu J Y, Zhang T S, Ji H G 2020 IEEE Access 8 85154Google Scholar

    [4]

    Hu X Z, Zheng D Y, Lin Y S 2020 Appl. Phys. A: Mater. Sci. Process. 126 110Google Scholar

    [5]

    Liu X, Huang J, Chen H 2022 Photonics Res. 10 1090Google Scholar

    [6]

    Zhang Z, Wen D, Zhang C 2018 ACS Photonics 5 1794Google Scholar

    [7]

    Liu Y Q, Che Y X, Qi K N, Li L S, Yin H C 2020 Opt. Commun. 474 126061Google Scholar

    [8]

    Huang J, Fu T, Li H, Shou Z, Gao X 2020 Chin. Opt. Lett. 18 013102Google Scholar

    [9]

    Wang H, Zhang Z, Zhao K, Liu W, Wang P, Lu Y 2021 Chin. Opt. Lett. 19 053601Google Scholar

    [10]

    Ma Z J, Hanham S M, Gong Y D, Hong M H 2018 Opt. Lett. 43 911Google Scholar

    [11]

    Yang L J, Li J S, Yan D X 2022 Opt. Commun. 516 128234Google Scholar

    [12]

    Jiang Q, Jin G, Cao L 2019 Adv. Opt. Photonics 11 518Google Scholar

    [13]

    Bao Y, Yan J, Yang X, Qiu C, Li B 2020 Nano Lett. 21 2332Google Scholar

    [14]

    Gao P, Chen C, Dai Y W, Wang X L, Liu H 2023 Opt. Mater. 145 114448Google Scholar

    [15]

    Ma Z, Li P, Chen S, Wu X 2022 Nanophotonics 11 1847Google Scholar

    [16]

    Zang X, Yao B, Chen L, Xie J, Guo X, Balakin A, Shkurinov A, Zhuang S 2021 Light: Adv. Manuf. 2 148Google Scholar

    [17]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H, Cao X 2022 Front. Magn. Mater. 9 854062Google Scholar

    [18]

    Liu J, Cheng Y, Chen F, Luo H, Li X 2023 Infrared Laser Eng. 52 20220377Google Scholar

    [19]

    Fu C, Zhao J, Li F, Li H 2023 Micromachines 14 465Google Scholar

    [20]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [21]

    Fan J, Cheng Y 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [22]

    Fu X M, Yang J, Wang J F, Ding C, Han Y J, Jia Y X, Liu T H, Zhu R C, Qu S B 2023 Laser Photonics Rev. 17 2200678Google Scholar

    [23]

    Zhang L, Liu S, Cui T 2017 Chin. Opt. 10 1Google Scholar

    [24]

    Liu W, Yang Q, Xu Q, Jiang X, Wu T, Gu J, Han J, Zhang W 2022 Nanophotonics 11 3631Google Scholar

    [25]

    Li J S, Guo F L, Chen Y 2023 Opt. Commun. 537 129428Google Scholar

  • 图 1  弧度与旋转共同诱导相位调控超表面及其功能示意图

    Fig. 1.  Schematic diagram of the proposed metasurface and its function induced by both arc and rotation co-induced phase modulation.

    图 2  单元尺寸参数

    Fig. 2.  Dimensional parameters of the unit cells.

    图 3  超表面单元的反射系数与相位 (a) LCP入射下超表面单元反射系数; (b) LCP入射下超表面单元反射相位; (c) RCP入射下超表面单元反射系数; (d) RCP入射下超表面单元反射相位

    Fig. 3.  Reflection coefficient and phase of the unit cells: (a) Reflection coefficients at LCP incidence; (b) reflection phases at LCP incidence; (c) reflection coefficients at RCP incidence; (d) reflection phases at RCP incidence.

    图 4  (a) l = 1超表面相位分布; (b) l = 1的超表面排布; (c) l = –1超表面相位分布; (d) l = –1超表面排布

    Fig. 4.  (a) The phase distribution of the metasurfaces at l = 1; (b) metasurfaces arrangement at l = 1; (c) the phase distribution of the metasurfaces at l = –1; (d) metasurfaces arrangement at l = –1.

    图 5  (a), (e) LCP波入射下, l = 1涡旋波束远场图和模式纯度; (b), (f) RCP波入射下, l = 1涡旋波束远场图和模式纯度; (c), (g) LCP波下, l = –1涡旋波束远场图和模式纯度; (d), (h) RCP波入射下, l = –1涡旋波束远场图和模式纯度

    Fig. 5.  (a), (e) Far-field patterns and mode purity of the vortex beam at l = 1 under LCP wave incidence; (b), (f) far-field patterns and mode purity of the vortex beam at l = 1 under RCP wave incidence; (c), (g) far-field patterns and mode purity of the vortex beam at l = –1 under LCP wave incidence; (d), (h) far-field patterns and mode purity of the vortex beam at l = –1 under RCP wave incidence.

    图 6  (a) zf = 1500μm超表面聚焦相位排布; (b) 超表面结构

    Fig. 6.  (a) Focusing phase arrangement of zf = 1500 μm metasurfaces; (b) metasurface structure.

    图 7  (a) LCP波入射, zf = 1500 μm处x-y截面的二维电场; (b) LCP波入射, y = 0 μm处x-z截面的二维电场; (c) RCP波入射, zf = 1500 μm处x-y截面的二维电场; (d) RCP波入射, y = 0 μm处x-z截面的二维电场

    Fig. 7.  (a) 2D electric field in x-y cross section at zf = 1500 μm under LCP wave incidence; (b) 2D electric field in x-z cross section at y = 0 under LCP wave incidence; (c) 2D electric field in x-y cross section at zf = 1500 μm under RCP wave incidence; (d) 2D electric field in the x-z cross section at y = 0 under RCP wave incidence.

    图 8  (a) l = 2涡旋波束相位图; (b)“64206420…”偏折相位图; (c) l = 2偏折卷积涡旋波束相位图; (d) l = 2偏折涡旋波束超表面结构; (e) l = –2涡旋波束相位图; (f)“0022446600224466…”偏折相位图; (g) l = –2偏折卷积涡旋波束相位图; (h) l = –2偏折涡旋波束超表面结构

    Fig. 8.  (a) Vortex beam phase diagram at l = 2; (b) ‘64206420…’ deflection phase diagram; (c) deflection convolution vortex beam phase diagram at l = 2; (d) deflection vortex beam metasurfaces structure at l = 2; (e) vortex beam phase diagram at l = –2, (f) ‘0022446600224466…’ deflected phase diagram; (g) deflected convolved vortex beam phase diagram at l = –2; (h) deflected vortex beam metasurfaces structure at l = –2.

    图 9  (a), (b) LCP波入射, l = 2偏折涡旋波束的远场和偏折角度; (c), (d) RCP波入射, l = 2偏折涡旋波束的远场和偏折角度; (e), (f) LCP波入射, l = –2偏折涡旋波束的远场和偏折角度; (g), (h) RCP波入射, l = –2偏折涡旋波束的远场和偏折角度

    Fig. 9.  (a), (b) Far field and deflection angle of l = 2 deflected vortex beam under LCP wave incidence; (c), (d) far field and deflection angle of l = 2 deflected vortex beam under RCP wave incidence; (e), (f) far field and deflection angle of l = –2 deflected vortex beam under LCP wave incidence; (g), (h) far field and deflection angle of l = –2 deflected vortex beam under RCP wave incidence.

    图 10  (a) zf = 1500 μm超表面聚焦相位; (b)“02460246…”偏折相位; (c)卷积后偏折聚焦相位; (d)偏折聚焦超表面结构

    Fig. 10.  (a) zf = 1500 μm metasurfaces focusing phase, (b) ‘02460246…’ deflection phase, (c) deflection focusing phase after convolution, (d) deflection focusing metasurface structure

    图 11  (a) LCP波入射, zf = 1500 μm处x-y截面的二维电场; (b) LCP波入射, y = 0 μm处x-z截面的二维电场; (c) RCP波入射, zf = 1500 μm处x-y截面的二维电场; (d) RCP波入射, y = 0 μm处x-z截面的二维电场

    Fig. 11.  (a) 2D electric field in x-y cross section at zf = 1500 μm under LCP wave incidence, (b) 2D electric field in x-z cross section at y = 0 under LCP wave incidence, (c) 2D electric field in x-y cross section at zf = 1500 μm under RCP wave incidence, (d) 2D electric field in the x-z cross section at y = 0 under RCP wave incidence.

    图 12  (a), (e)拓扑荷数为l = 1和 l = 2的涡旋相位排布; (b), (f)负轴向产生的反向贝塞尔光束的傅里叶变换相位排布; (c), (g) 焦透镜的相位排布; (d), (h) 拓扑荷数为l = 1和l = 2的完美涡旋相位排布

    Fig. 12.  (a), (e) Vortex phase arrangement for the topological charges of l = 1 and l = 2; (b), (f) Fourier-transform phase arrangement of the inverted Bessel beam generated in the negative axial direction; (c), (g) phase arrangement of the focal lens; (d), (h) perfect vortex phase arrangement for the topological charges of l = 1 and l = 2.

    图 13  (a) 拓扑荷数l = 1的完美涡旋波束电场强度分布; (b) 拓扑荷数l = 2的完美涡旋波束电场强度分布

    Fig. 13.  (a) Electric field strength distribution of a perfect vortex beam for the topological charge of l = 1; (b) electric field strength distribution of a perfect vortex beam for the topological charge of l = 2.

    图 14  (a)左偏 (l = 2) 涡旋波束的相位排布; (b) 右偏 (l = –2) 涡旋波束的相位排布; (c) 横向双通道涡旋波束的相位排布

    Fig. 14.  (a) Phase arrangement of the left-biased vortex beam (l = 2); (b) phase arrangement of the right-biased vortex beam (l = –2); (c) phase arrangement of the transverse two-channel vortex beam.

    图 15  (a) LCP波入射下, 频率1.1 THz处, l = ±2双通道涡旋波束的远场强度; (b) RCP波入射下, 频率1.1 THz处, l = ±2双通道涡旋波束的远场强度

    Fig. 15.  (a) Far-field intensity of two-channel vortex beam (l = ±2) at 1.1 THz under LCP wave incidence; (b) far-field intensity of two-channel vortex beam (l = ±2) at 1.1 THz under RCP wave incidence.

  • [1]

    Feng C H, Otani C 2021 Crit. Rev. Food Sci. Nutr. 61 2523Google Scholar

    [2]

    Song Z Y, Chen A P, Zhang J H 2020 Opt. Express 28 2037Google Scholar

    [3]

    Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z, Zhu J Y, Zhang T S, Ji H G 2020 IEEE Access 8 85154Google Scholar

    [4]

    Hu X Z, Zheng D Y, Lin Y S 2020 Appl. Phys. A: Mater. Sci. Process. 126 110Google Scholar

    [5]

    Liu X, Huang J, Chen H 2022 Photonics Res. 10 1090Google Scholar

    [6]

    Zhang Z, Wen D, Zhang C 2018 ACS Photonics 5 1794Google Scholar

    [7]

    Liu Y Q, Che Y X, Qi K N, Li L S, Yin H C 2020 Opt. Commun. 474 126061Google Scholar

    [8]

    Huang J, Fu T, Li H, Shou Z, Gao X 2020 Chin. Opt. Lett. 18 013102Google Scholar

    [9]

    Wang H, Zhang Z, Zhao K, Liu W, Wang P, Lu Y 2021 Chin. Opt. Lett. 19 053601Google Scholar

    [10]

    Ma Z J, Hanham S M, Gong Y D, Hong M H 2018 Opt. Lett. 43 911Google Scholar

    [11]

    Yang L J, Li J S, Yan D X 2022 Opt. Commun. 516 128234Google Scholar

    [12]

    Jiang Q, Jin G, Cao L 2019 Adv. Opt. Photonics 11 518Google Scholar

    [13]

    Bao Y, Yan J, Yang X, Qiu C, Li B 2020 Nano Lett. 21 2332Google Scholar

    [14]

    Gao P, Chen C, Dai Y W, Wang X L, Liu H 2023 Opt. Mater. 145 114448Google Scholar

    [15]

    Ma Z, Li P, Chen S, Wu X 2022 Nanophotonics 11 1847Google Scholar

    [16]

    Zang X, Yao B, Chen L, Xie J, Guo X, Balakin A, Shkurinov A, Zhuang S 2021 Light: Adv. Manuf. 2 148Google Scholar

    [17]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H, Cao X 2022 Front. Magn. Mater. 9 854062Google Scholar

    [18]

    Liu J, Cheng Y, Chen F, Luo H, Li X 2023 Infrared Laser Eng. 52 20220377Google Scholar

    [19]

    Fu C, Zhao J, Li F, Li H 2023 Micromachines 14 465Google Scholar

    [20]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [21]

    Fan J, Cheng Y 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [22]

    Fu X M, Yang J, Wang J F, Ding C, Han Y J, Jia Y X, Liu T H, Zhu R C, Qu S B 2023 Laser Photonics Rev. 17 2200678Google Scholar

    [23]

    Zhang L, Liu S, Cui T 2017 Chin. Opt. 10 1Google Scholar

    [24]

    Liu W, Yang Q, Xu Q, Jiang X, Wu T, Gu J, Han J, Zhang W 2022 Nanophotonics 11 3631Google Scholar

    [25]

    Li J S, Guo F L, Chen Y 2023 Opt. Commun. 537 129428Google Scholar

  • [1] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化. 物理学报, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [7] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [11] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [13] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [14] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位. 物理学报, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [15] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化. 物理学报, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [16] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [17] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋. 物理学报, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [18] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解. 物理学报, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [19] 郑映鸿, 陈 童, 王 平, 常 哲. 几何相位的伽利略变换性质. 物理学报, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [20] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
计量
  • 文章访问数:  234
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-20
  • 修回日期:  2024-11-24
  • 上网日期:  2024-12-03

/

返回文章
返回