搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子超外差探测的太赫兹测厚

刘笑宏 滕玉勤 李琬钰 张彩霞 黄巍

引用本文:
Citation:

基于原子超外差探测的太赫兹测厚

刘笑宏, 滕玉勤, 李琬钰, 张彩霞, 黄巍
cstr: 32037.14.aps.74.20241542

Terahertz thickness measurement based on atomic superheterodyne detection

LIU Xiaohong, TENG Yuqin, LI Wanyu, ZHANG Caixia, HUANG Wei
cstr: 32037.14.aps.74.20241542
PDF
HTML
导出引用
  • 基于室温原子的超外差太赫兹电场探测, 场强灵敏度可达5.76 μV/(cm·Hz1/2), 线性动态范围优于60 dB. 原子超外差太赫兹探测具有极高的灵敏度, 可用于精确测量材料的透射率, 实现对材料厚度的高精度测量. 本文实验测量了蓝宝石晶体材料和聚四氟乙烯有机材料的厚度, 而且由太赫兹透射信号可以清晰地分辨出单层石墨烯与少层石墨烯. 甚至对于厚度达到1 μm的超导金属铌薄膜也可以探测到微弱的太赫兹透射信号, 这都得益于原子超外差太赫兹探测器的高灵敏度. 总之, 本文采用的基于原子超外差探测太赫兹测厚技术, 在有机材料缺陷检测、涂层材料测厚及二维材料参数测量等方面都具有重要的应用价值.
    Terahertz thickness measurement is very important in materials research and industrial test. And it can beused to measure various materials such as wood, paper, ceramics, plastics, and composite materials. Atomic superheterodyne terahertz detector has extremely high sensitivity. The sensitivity of terahertz electric field strength measurement can reach 5.76 μV/(cm·Hz1/2). Simultaneously, the linear dynamic range is better than 60 dB. So, it can be used to precisely measure the thickness of materials through the terahertz transmission efficiency. The experiments in this work demonstrate the thickness measurement of sapphire crystal and organic materials PTFE. The terahertz signal is shown in Fig. (a) sapphire material and Fig. (b) PTFE material. The thickness can be calculated from the transmittance, and the result is consistent with the result measured directly with a vernier caliper. Furthermore, single-layer graphene and few-layer graphene can be clearly distinguished from terahertz transmission signals as shown in Fig. (c) graphene material. Even for niobium meta thin films with thickness of 1 μm, very weak terahertz signal can be well distinguished due to the high sensitivity of atomic superheterodyne terahertz detector. In summary, the technology developed for terahertz thickness measurement based on atomic superheterodyne detection is very important for detecting defects, checking coating, and measuring the parameters of materials.
      通信作者: 刘笑宏, liuxiaohong@m.scnu.edu.cn ; 黄巍, WeiHuang@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204182)和广东省基础与应用基础研究基金(批准号: 2022A1515012026)资助的课题.
      Corresponding author: LIU Xiaohong, liuxiaohong@m.scnu.edu.cn ; HUANG Wei, WeiHuang@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204182) and the Basic and Applied Basic Research Fund of Guangdong Province, China (Grant No. 2022A1515012026).
    [1]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Raithel G 2014 IEEE T. Antenn. Propag. 62 6169Google Scholar

    [3]

    焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar

    Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar

    [4]

    吴逢川, 安强, 姚佳伟, 付云起 2023 物理学报 72 047401Google Scholar

    Wu F C, An Q, Yao J W, Fu Y Q 2023 Acta Phys. Sin. 72 047401Google Scholar

    [5]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [6]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar

    [7]

    Daschner R, Kübler H, Löw R, Baur H, Frühauf N, Pfau T 2014 Appl. Phys. Lett. 105 041107Google Scholar

    [8]

    Holloway C L, Prajapati N, Kitching J, Sherman J A, Teale C, Rufenacht A, Norrgard E B 2021 arxiv: 2110.02335

    [9]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [10]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [11]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antenn. Wirel. Pr. 18 1853Google Scholar

    [12]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [13]

    Anderson D A, Sapiro R E, Raithel G 2020 IEEE T Antenn. Propag. 69 2455

    [14]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [15]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar

    [17]

    Yang B W, Yan Y H, Li X J, Xiao L, Li X L, Chen L Q, Deng J L, Cheng H D 2024 Phys. Rev. Appl. 21 L031003Google Scholar

    [18]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [19]

    Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W 2022 Phys. Rev. Appl. 18 054003Google Scholar

    [20]

    Chen S, Reed D J, Mac Kellar A R, Downes L A, Almuhawish N F, Jamieson M J, Weatherill K J 2022 Optica 9 485Google Scholar

    [21]

    Wade C G, Šibalić N, De Melo N R., Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [22]

    Downes L A, Mac Kellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027

    [23]

    陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮 2021 物理学报 70 060702Google Scholar

    Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021 Acta Phys. Sin. 70 060702Google Scholar

    [24]

    Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhang X D, Chen J H, Huang W, Yan H, Zhu S L 2023 Fundamental Research https://doi.org/10.1016/j.fmre.2023. 02.019

    [25]

    She Z Y, Zhu X J, Lin YY, Li X Z, Yang X L, Shang Y F, Teng Y Q, Tu H Q, Liao K Y, Zhang C X, Liu X H, Chen J H, Huang W 2024 Chin. Phys. Lett. 41 084201Google Scholar

    [26]

    Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Vandewal M 2014 Opt. Eng. 53 031208

    [27]

    Yasui T, Yasuda T, Sawanaka K I, Araki T 2005 Appl. Optics 44 6849Google Scholar

    [28]

    Iwata T, Yoshioka S, Nakamura S, Mizutani Y, Yasui T 2013 J. Infrared Millim. Te. 34 646Google Scholar

    [29]

    张洪桢, 何明霞, 石粒力, 王鹏騛 2020 光谱学和光谱分析 40 3066

    Zhang H Z, He M X, Shi L L, Wang P F 2020 Spectrosc. Spect. Anal. 40 3066

    [30]

    林玉华, 何明霞, 赖慧彬, 李鹏飞, 马文鹤 2017 光谱学和光谱分析 37 3332

    Lin Y H, He M X, Lai H B, Li P F, Ma W H 2017 Spectrosc. Spect. Anal. 37 3332

    [31]

    James L H, Jeon T I 2012 J. Infrared Millim. Te. 33 871Google Scholar

  • 图 1  微波缀饰下的里德伯暗态光谱[16]

    Fig. 1.  Rydberg dark state spectrum under microwave embellishment[16].

    图 2  实验方案 (a) 实验能级图; (b) 实验装置示意图

    Fig. 2.  Experimental programme: (a) Energy diagram; (b) experimental setup.

    图 3  原子超外差探测器线性区域和灵敏度

    Fig. 3.  Linear dynamical range and sensitivity of the atomic heterodyne detector.

    图 4  固体材料厚度测量 (a) 0.49 mm厚蓝宝石材料透射光谱; (b) 2 mm厚蓝宝石材料透射光谱; (c) 2 mm厚聚四氟乙烯材料透射光谱; (d) 8 mm厚聚四氟乙烯材料透射光谱

    Fig. 4.  Solid material thickness measurements: (a) Transmission spectrum of 0.49 mm thick sapphire material; (b) transmission spectrum of 2 mm thick sapphire material; (c) transmission spectrum of 2 mm thick PTFE material; (d) transmission spectrum of 8 mm thick PTFE material.

    图 5  石墨烯材料透射光谱

    Fig. 5.  Transmission spectrum of graphene material.

    图 6  超导铌薄膜透射光谱

    Fig. 6.  Transmission spectrum of superconducting niobium film.

  • [1]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Raithel G 2014 IEEE T. Antenn. Propag. 62 6169Google Scholar

    [3]

    焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar

    Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar

    [4]

    吴逢川, 安强, 姚佳伟, 付云起 2023 物理学报 72 047401Google Scholar

    Wu F C, An Q, Yao J W, Fu Y Q 2023 Acta Phys. Sin. 72 047401Google Scholar

    [5]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [6]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar

    [7]

    Daschner R, Kübler H, Löw R, Baur H, Frühauf N, Pfau T 2014 Appl. Phys. Lett. 105 041107Google Scholar

    [8]

    Holloway C L, Prajapati N, Kitching J, Sherman J A, Teale C, Rufenacht A, Norrgard E B 2021 arxiv: 2110.02335

    [9]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [10]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [11]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antenn. Wirel. Pr. 18 1853Google Scholar

    [12]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [13]

    Anderson D A, Sapiro R E, Raithel G 2020 IEEE T Antenn. Propag. 69 2455

    [14]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [15]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047Google Scholar

    [17]

    Yang B W, Yan Y H, Li X J, Xiao L, Li X L, Chen L Q, Deng J L, Cheng H D 2024 Phys. Rev. Appl. 21 L031003Google Scholar

    [18]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [19]

    Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W 2022 Phys. Rev. Appl. 18 054003Google Scholar

    [20]

    Chen S, Reed D J, Mac Kellar A R, Downes L A, Almuhawish N F, Jamieson M J, Weatherill K J 2022 Optica 9 485Google Scholar

    [21]

    Wade C G, Šibalić N, De Melo N R., Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [22]

    Downes L A, Mac Kellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027

    [23]

    陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮 2021 物理学报 70 060702Google Scholar

    Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021 Acta Phys. Sin. 70 060702Google Scholar

    [24]

    Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhang X D, Chen J H, Huang W, Yan H, Zhu S L 2023 Fundamental Research https://doi.org/10.1016/j.fmre.2023. 02.019

    [25]

    She Z Y, Zhu X J, Lin YY, Li X Z, Yang X L, Shang Y F, Teng Y Q, Tu H Q, Liao K Y, Zhang C X, Liu X H, Chen J H, Huang W 2024 Chin. Phys. Lett. 41 084201Google Scholar

    [26]

    Ospald F, Zouaghi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Vandewal M 2014 Opt. Eng. 53 031208

    [27]

    Yasui T, Yasuda T, Sawanaka K I, Araki T 2005 Appl. Optics 44 6849Google Scholar

    [28]

    Iwata T, Yoshioka S, Nakamura S, Mizutani Y, Yasui T 2013 J. Infrared Millim. Te. 34 646Google Scholar

    [29]

    张洪桢, 何明霞, 石粒力, 王鹏騛 2020 光谱学和光谱分析 40 3066

    Zhang H Z, He M X, Shi L L, Wang P F 2020 Spectrosc. Spect. Anal. 40 3066

    [30]

    林玉华, 何明霞, 赖慧彬, 李鹏飞, 马文鹤 2017 光谱学和光谱分析 37 3332

    Lin Y H, He M X, Lai H B, Li P F, Ma W H 2017 Spectrosc. Spect. Anal. 37 3332

    [31]

    James L H, Jeon T I 2012 J. Infrared Millim. Te. 33 871Google Scholar

  • [1] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱. 物理学报, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [2] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [3] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [4] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究. 物理学报, 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [5] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [6] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [7] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [8] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [9] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [10] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [11] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [12] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [13] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [14] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [15] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [16] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [17] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [18] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量. 物理学报, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [19] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [20] 杨焕旺, 刘磊, 李家明. 以Ne原子为联合原子的系列分子里德伯能级结构. 物理学报, 1992, 41(1): 10-17. doi: 10.7498/aps.41.10
计量
  • 文章访问数:  254
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-03
  • 修回日期:  2024-12-03
  • 上网日期:  2024-12-09

/

返回文章
返回