搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测研究

王德鑫 张蕊 尉德康 那蕙 姚张浩 吴凌赫 张苏雅拉吐 梁泰然 黄美容 王志龙 白宇 黄永顺 杨雪 张嘉文 刘梦迪 马蔷 于静 纪秀艳 于伊丽琦 邵学鹏

引用本文:
Citation:

基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测研究

王德鑫, 张蕊, 尉德康, 那蕙, 姚张浩, 吴凌赫, 张苏雅拉吐, 梁泰然, 黄美容, 王志龙, 白宇, 黄永顺, 杨雪, 张嘉文, 刘梦迪, 马蔷, 于静, 纪秀艳, 于伊丽琦, 邵学鹏

Observation and Research on Cosmic Ray Muons and Solar Modulation Effect Based on Plastic Scintillator Detector

WANG DeXin, ZHANG Rui, YU DeKang, NA Hui, YAO ZhangHao, WU LingHe, ZHANG SuYaLaTu, LIANG TaiRan, HUANG MeiRong, WANG ZhiLong, BAI Yu, HUANG YongShun, YANG Xue, ZHANG JiaWen, LIU MengDi, MA Qiang, YU Jing, JI XiuYan, YU YiLiQi, SHAO XuePeng
PDF
导出引用
  • 本文利用塑料闪烁体探测器进行了宇宙线缪子计数谱及各向异性特性的观测实验。实验采用双端符合测量和标准γ源进行能量刻度,显著减小了探测器的噪声干扰,提高了测量数据的可靠性。通过引入温度与气压修正函数,对计数结果进行了气象效应校正。实验结果显示,缪子在塑料闪烁体探测器中的能量损失呈现出随时间和太阳活动变化的周期性特征,反映出太阳对宇宙线各向异性的调制效应。此外,实验数据与羊八井观测站中子-缪子望远镜的观测结果在缪子计数的日周期变化趋势上表现出较高的一致性。本研究为深入探索宇宙线缪子的能量分布及太阳调制效应提供了可靠的实验依据,同时为宇宙线探测技术的应用与发展提供了重要参考。
    Cosmic rays, originating from celestial phenomena such as stars, supernovae, and other astrophysical sources, are composed of high-energy particles that enter Earth’ s atmosphere. Upon interaction with atmospheric nuclei, these primary cosmic rays generate an array of secondary particles, with muons constituting the dominant component at ground level. Muons, due to their relative abundance, stability, and well-characterized energy loss mechanisms, serve as critical probes for investigating the fundamental properties of cosmic rays. Studies of muon energy distribution, diurnal anisotropy, and their modulation by solar activity provide essential insights into the mechanisms of particle acceleration in cosmic ray sources and the influence of solar and atmospheric effects.
    This study aims to characterize the counting spectrum and anisotropic properties of cosmic ray muons using a plastic scintillator detector system. The experiment was conducted over a three-month period, from December 2023 to February 2024, leveraging long-bar plastic scintillator detectors equipped with dual-end photomultiplier tubes (PMTs) and a high-resolution digital data acquisition system. A dual-end coincidence measurement technique was implemented to enhance the signal-to-noise ratio by suppressing thermal noise and other background interferences. Comprehensive calibration of the detection system was performed using standard gamma-ray sources, including 137Cs, 60Co, and 40K, ensuring precise energy scaling and reliable performance.
    The observed energy spectrum of cosmic ray muons showed excellent agreement with theoretical predictions, accounting for the energy losses incurred as muons traverse the detector. Diurnal variations in muon count rates revealed a pronounced pattern, with a systematic reduction observed between 8:00 AM and 1:00 PM. This phenomenon is attributed to solar shielding effects, wherein enhanced solar activity during daytime hours modulates the flux of galactic cosmic rays reaching Earth’ s surface. To account for atmospheric influences, meteorological corrections were applied using temperature and pressure adjustment functions derived from regression analysis. These corrections revealed that atmospheric pressure and temperature are significant factors influencing muon count rates, with clear linear relationships observed.
    The study further corroborated these findings through cross-comparisons with data from the Yangbajing Cosmic Ray Observatory. Minor discrepancies, primarily in low-energy muon count rates, were attributed to variations in detector sensitivities and local atmospheric conditions. These observations underscore the robustness of the plastic scintillator detector system for capturing detailed muon spectra and anisotropic patterns.
    In conclusion, this research establishes a reliable experimental framework for analyzing cosmic ray muons and their modulation by solar and atmospheric phenomena. The results contribute to a deeper understanding of cosmic ray anisotropy and the interplay between astrophysical and geophysical processes. Furthermore, the findings provide valuable insights for optimizing detection technologies and enhancing the accuracy of cosmic ray studies.
  • [1]

    Liu J,Cao Z 2024 Physics 53237(in Chinese)[刘佳,曹臻2024物理53237]

    [2]

    Li C,Yang R Z,Cao Z 2024 Chin. Sci. Bull. 692698(in Chinese)[李骢,杨睿智,曹臻2024科学通报692698]

    [3]

    Axi Kugu,Zhou X X,Zhang Y F 2024 Acta Phys. Sin. 73129201(in Chinese)[阿西克古, 周勋秀,张云峰2024物理学报73129201]

    [4]

    Compton A H,Getting I A 1935 Physical Review 47817

    [5]

    Song X J,Luo X 2022 Proc. of the Joint Annual Meeting of Chinese Earth Sciences - 1(in Chinese)[宋小健,罗熙2022年中国地球科学联合学术年会论文集— 1]

    [6]

    Tong F,Jia H Y,Zhou X X, et al. 2015 Nucl. Phys. Rev. 32286(in Chinese)[仝帆,贾焕玉,周勋秀,等2015原子核物理评论32286]

    [7]

    Liu J,Zhou D W 2007 J. Zhengzhou Univ. (Nat. Sci. Ed.) 0175(in Chinese)[刘王君,周德文 2007郑州大学学报(理学版) 0175]

    [8]

    Liu J,Jia H Y,Huang Q 2004 Nucl. Phys. Rev. 0138(in Chinese)[刘王君,贾焕玉,黄庆2004原子核物理评论0138]

    [9]

    Jia H Y,Cao Z,Zhang H M 1994 High Energy Phys. Nucl. Phys. 09788(in Chinese)[贾焕玉,曹臻,张慧敏1994高能物理与核物理09788]

    [10]

    Liu Y,Niu H R,Li B B,et al. 2023 Acta Phys. Sin. 72140202(in Chinese)[刘烨,牛赫然, 李兵兵,等2023物理学报72140202]

    [11]

    Aemnomori M et al. 2005 The Asrophysical Journal 626 L29

    [12]

    Wang Q Q,Zhang X,Tian L C,et al. 2023 J.Nucl.Tech. 4617(in Chinese)[王启奇,张湘, 田立朝,等2023核技术4617]

    [13]

    Liu X M,Song X J,Geng Z K,et al. 2024 Chinese J. Geophys. 671299(in Chinese)[刘新铭,宋小健,耿泽坤,等2024地球物理学报671299]

    [14]

    Xiao Z Y,Wang Z C,Huang X,et al. 2022 Guangxi Phys. 438 (in Chinese)[肖政耀,王梓丞,黄新,等2022广西物理438]

    [15]

    He W J,Li B 2024 College Phys. 4360(in Chinese)[何韦杰,李波2024大学物理4360]

    [16]

    Yin J,Zhang Y P,Ni F F,et al. 2017 Nuclear Electronics Detection Technology 37929(in Chinese)[尹俊,张亚鹏,倪发福,等2017核电子学与探测技术37929]

    [17]

    Pi B S, Wei Z Y, Wang Z, et al. 2017 J.Nucl.Tech. 4061(in Chinese)[皮本松, 魏志勇, 王振, 等.2017核技术4061]

    [18]

    Han J X, Ye Y L, Lou J L, et al. 2023 Commun Phys 6220

    [19]

    Geng P, Duan L M, Ma Peng, et al. 2010 Nuclear Physics Review 27450(in Chinese)[耿朋, 段利敏, 马朋, 等. 2010原子核物理评论27450]

    [20]

    Hao J X,Guo G,Sun B H 2024 College Phys. 4355(in Chinese)[郝佳欣,郭戈,孙保华2024大学物理4355]

    [21]

    Chang L, Liu Y D, Du L, et al. 2015 J.Nucl.Tech. 3846(in Chinese)[常乐, 刘应都, 杜龙, 等2015核技术3846]

    [22]

    Zhang S Y L T, Chen Z Q, Han Rui, et al. 2013 Chinese Physics C 3771

    [23]

    Tang Q Y, Lu H, Le G M, et al. 2004 Chinese Journal of Space Science 24219(in Chinese)[唐云秋, 卢红, 乐贵明, 等. 2004空间科学学报24219]

    [24]

    Xu C L,Wang Y,Qin G,et al. 2023 Research in Astronomy and Astrophysics 23025010

    [25]

    Adamson P et al. 2010 Phys. Rev. D 81012001

    [26]

    Dorman L I 1974 in Cosmic Rays, Variation and Space Exploration. North-Holland.

    [27]

    Erhart A,Wagner V,Wex A,et al. 2024 The European Physical Journal C 841

    [28]

    Zhou X X, Wang X J, Huang D H, et al. 2015 Acta Phys. Sin. 64149202(in Chinese)[周勋秀, 王新建, 黄代绘, 等2015物理学报64149202]

    [29]

    Zhang J L, Tan Y H, Wang H, et al. 2010 Nucl. Instrum. Methods Phys. Res. A 6231030

    [30]

    Institute of High Energy Physics (ihep.ac.cn) http://ybjnm.ihep.ac.cn/.

  • [1] 李阳, 张艳红, 盛亮, 张美, 姚志明, 段宝军, 赵吉祯, 郭泉, 严维鹏, 李国光, 胡佳琦, 李豪卿, 李郎郎. 不同厚度ST401中子能谱响应测量与分析. 物理学报, doi: 10.7498/aps.73.20241198
    [2] 顾梓恒, 臧强, 郑改革. 外尔半金属调制的范德瓦耳斯声子极化激元色散性质. 物理学报, doi: 10.7498/aps.72.20230167
    [3] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, doi: 10.7498/aps.72.20222048
    [4] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [5] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质. 物理学报, doi: 10.7498/aps.72.20222144
    [6] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, doi: 10.7498/aps.71.20221556
    [7] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, doi: 10.7498/aps.70.20210632
    [8] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, doi: 10.7498/aps.70.20210747
    [9] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, doi: 10.7498/aps.64.106101
    [10] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, doi: 10.7498/aps.64.149202
    [11] 徐妙华, 李红伟, 刘峰, 刘必成, 杜飞, 张璐, 苏鲁宁, 李英骏, 李玉同, 陈佳洱, 张杰. 实时离子探测器塑料闪烁体性能的实验研究. 物理学报, doi: 10.7498/aps.61.105202
    [12] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, doi: 10.7498/aps.61.068401
    [13] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, doi: 10.7498/aps.61.159202
    [14] 凌瑞良, 冯进, 冯金福. 三维各向异性耦合谐振子体系的量子化能谱与精确波函数. 物理学报, doi: 10.7498/aps.59.8348
    [15] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, doi: 10.7498/aps.57.7729
    [16] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性. 物理学报, doi: 10.7498/aps.57.1746
    [17] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, doi: 10.7498/aps.56.1443
    [18] 张国光, 欧阳晓平, 张建福, 王志强, 张忠兵, 马彦良, 张显鹏, 陈 军, 张小东, 潘洪波, 骆海龙, 刘毅娜. ST-401薄塑料闪烁体中子能量响应测量技术研究. 物理学报, doi: 10.7498/aps.55.2165
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, doi: 10.7498/aps.53.2233
    [20] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, doi: 10.7498/aps.53.783
计量
  • 文章访问数:  34
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回