搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态核磁共振量子控制及其应用

赵立强 李宇晨 尹浩川 张晟昱 吴泽 彭新华

引用本文:
Citation:

固态核磁共振量子控制及其应用

赵立强, 李宇晨, 尹浩川, 张晟昱, 吴泽, 彭新华
cstr: 32037.14.aps.74.20241709

Quantum control based on solid-state nuclear magnetic resonance and its applications

ZHAO Liqiang, LI Yuchen, YIN Haochuan, ZHANG Shengyu, WU Ze, PENG Xinhua
cstr: 32037.14.aps.74.20241709
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 作为一种物质表征的重要技术手段, 固态核磁共振已经在物理学、材料科学、化学、生物学等多个学科领域得到广泛的应用. 近年来, 得益于固态核磁共振体系中丰富的多体相互作用和多样的脉冲控制手段, 该技术逐渐在前沿的量子科技中展现出重要的研究价值和应用潜力. 本文系统性地介绍了固态核磁共振体系的研究对象和理论基础, 包括该系统中重要的核自旋相互作用机理及其哈密顿量形式, 列举了动力学解耦、魔角旋转等典型的固态核自旋动力学调控手段. 此外, 我们重点展示了近年来在固态核磁共振量子控制方面取得的前沿进展, 包括核自旋极化增强技术、弗洛凯哈密顿量的调控技术等. 最后, 我们结合一些重要的研究工作阐述了固态核磁共振量子控制技术在量子模拟领域中的应用.
    Solid-state nuclear magnetic resonance (NMR) has emerged as an important technique for material characterization, finding extensive applications across a diverse range of disciplines including physics, materials science, chemistry, and biology. Its utility stems from the ability to probe the local atomic environments and molecular dynamics within solid materials, which provides information on the composition of the material. In recent years, the scope of solid-state NMR has expanded into the realm of quantum information science and technology, where its abundant many-body interactions pulse control methodologies make it have significant research value and application potential. This paper offers a comprehensive overview of the research objects and theoretical underpinnings of solid-state NMR, delving into the critical nuclear spin interaction mechanisms and their corresponding Hamiltonian forms. These interactions, which include dipolar coupling, chemical shift anisotropy, and quadrupolar interactions, are fundamental to the interpretation of NMR spectra and the understanding of material properties at the atomic level. Moreover, the paper introduces typical dynamical control methods employed in the manipulation of solid-state nuclear spins. Techniques such as dynamical decoupling, which mitigates the effects of spin-spin interactions to extend coherence times, and magic-angle spinning, which averages out anisotropic interactions to yield high-resolution spectra. These methods are essential for enhancing the sensitivity and resolution of NMR experiments, enabling the extraction of detailed structural and dynamic information from complex materials. Then we introduce some recent advancements in quantum control based on solid-state NMR, such as nuclear spin polarization enhancement techniques, which include dynamic nuclear polarization (DNP) and cross polarization (CP), significantly boost the sensitivity of NMR measurements. Additionally, the control techniques of Floquet average Hamiltonians are mentioned, showcasing their role in the precise manipulation of quantum states and the realization of quantum dynamics. Finally, the paper presents a series of seminal research works that illustrate the application of solid-state NMR quantum control technologies in the field of quantum simulation. These studies demonstrate how solid-state NMR can be leveraged to simulate and investigate quantum many-body systems, providing valuable insights into quantum phase transitions, entanglement dynamics, and other phenomena relevant to quantum information science. By bridging the gap between fundamental research and practical applications, solid-state NMR continues to play a crucial role in advancing our understanding of quantum materials and technologies.
      通信作者: 吴泽, wuze@ustc.edu.cn ; 彭新华, xhpeng@ustc.edu.cn
    • 基金项目: 科技创新2030―“量子通信与量子计算机”重大项目(批准号: 2021ZD0303205)、国家自然科学基金(批准号: 12261160569)、国家自然科学基金/香港研资局合作研究计划(批准号: CUHK401/22)、新基石科学基金、中国博士后科学基金(批准号: 2023M733416)和中央高校基本科研业务费专项资金(批准号: WK2030000084)资助的课题.
      Corresponding author: WU Ze, wuze@ustc.edu.cn ; PENG Xinhua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303205), the National Natural Science Foundation of China (Grant No. 12261160569), the National Natural Science Foundation of China/Hong Kong RGC Collaborative Research Scheme (Grant No. CUHK401/22), the New Cornerstone Science Foundation, the China Postdoctoral Science Foundation (Grant No. 2023M733416), and the Fundamental Research Funds for the Central Universities (Grant No. WK2030000084).
    [1]

    Lloyd S 1993 Science 261 1569Google Scholar

    [2]

    DiVincenzo D P 1995 Phys. Rev. A 51 1015Google Scholar

    [3]

    Cory D G, Fahmy A F, Havel T F 1997 P. Natl. A. Sci. 94 1634Google Scholar

    [4]

    Gershenfeld N A, Chuang I L 1997 Science 275 350Google Scholar

    [5]

    Jones J A 2011 Progress Nucl. Mag. Res. Sp. 59 91Google Scholar

    [6]

    Vandersypen L M, Chuang I L 2004 Rev. Mod. Phys. 76 1037Google Scholar

    [7]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser S J 2005 J. Magn. Reson. 172 296Google Scholar

    [8]

    Haeberlen U 2012 High Resolution NMR in Solids Selective Averaging: Supplement 1 Advances in Magnetic Resonance (Vol. 1) (Elsevier) pp1–186

    [9]

    Kane B E 1998 Nature 393 133Google Scholar

    [10]

    Pham L M, DeVience S J, Casola F, Lovchinsky I, Sushkov A O, Bersin E, Lee J, Urbach E, Cappellaro P, Park H, et al. 2016 Phys. Rev. B 93 045425Google Scholar

    [11]

    Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J, Rey A M 2017 Nat. Phys. 13 781Google Scholar

    [12]

    Geier S, Thaicharoen N, Hainaut C, Franz T, Salzinger A, Tebben A, Grimshandl D, Zürn G, Weidemüller M 2021 Science 374 1149Google Scholar

    [13]

    Miller C, Carroll A N, Lin J, Hirzler H, Gao H, Zhou H, Lukin M D, Ye J 2024 Nature 633 332Google Scholar

    [14]

    Warren W S 1997 Science 277 1688Google Scholar

    [15]

    Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein Y S, Zurek W H 2000 Fortschr. Phys. 48 875Google Scholar

    [16]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2015 物理学报 64 167601Google Scholar

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2015 Acta Phys. Sin. 64 167601Google Scholar

    [17]

    Krojanski H G, Suter D 2006 Phys. Rev. Lett. 97 150503Google Scholar

    [18]

    Cappellaro P, Emerson J, Boulant N, Ramanathan C, Lloyd S, Cory D G 2005 Phys. Rev. Lett. 94 020502Google Scholar

    [19]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349 846Google Scholar

    [20]

    Wei K X, Ramanathan C, Cappellaro P 2018 Phys. Rev. Lett. 120 070501Google Scholar

    [21]

    Rovny J, Blum R L, Barrett S E 2018 Physical review letters 120 180603Google Scholar

    [22]

    Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P 2019 Phys. Rev. Lett. 123 090605Google Scholar

    [23]

    Sánchez C M, Chattah A K, Wei K X, Buljubasich L, Cappellaro P, Pastawski H M 2020 Phys. Rev. Lett. 124 030601Google Scholar

    [24]

    Peng P, Yin C, Huang X, Ramanathan C, Cappellaro P 2021 Nat. Phys. 17 444Google Scholar

    [25]

    Peng P, Ye B, Yao N Y, Cappellaro P 2023 Nat. Phys. 19 1027Google Scholar

    [26]

    Stasiuk A, Cappellaro P 2023 Phys. Rev. X 13 041016Google Scholar

    [27]

    Li Y, Zhou T G, Wu Z, Peng P, Zhang S, Fu R, Zhang R, Zheng W, Zhang P, Zhai H, Peng X H, Du J F 2023 Nat. Phys. 20 1966

    [28]

    Cappellaro P, Ramanathan C, Cory D G 2007 Phys. Rev. Lett. 99 250506Google Scholar

    [29]

    Álvarez G A, Suter D 2010 Phys. Rev. Lett. 104 230403Google Scholar

    [30]

    Ramanathan C, Cappellaro P, Viola L, Cory D G 2011 New J. Phys. 13 103015Google Scholar

    [31]

    Kaur G, Cappellaro P 2012 New J. Phys. 14 083005Google Scholar

    [32]

    Ernst M 2003 J. Magn. Reson. 162 1Google Scholar

    [33]

    Souza A M, Álvarez G A, Suter D 2012 Philos. T. R. Soc. A 370 4748Google Scholar

    [34]

    Medek A, Harwood J S, Frydman L 1995 J. Am. Chem. So. 117 12779Google Scholar

    [35]

    Levitt M H, Grant D M, Harris R K 2007 Solid State NMR Studies of Biopolymers (Wiley John + Sons) pp83–108

    [36]

    Weingarth M, Demco D E, Bodenhausen G, Tekely P 2009 Chem. Phys. Lett. 469 342Google Scholar

    [37]

    Hartmann S, Hahn E 1962 Phys. Rev. 128 2042Google Scholar

    [38]

    Li Y C, Zhang S Y, Wu Z, Peng X H, Fu R Q 2022 Magn. Reson. Lett. 2 147Google Scholar

    [39]

    Thankamony A S L, Wittmann J J, Kaushik M, Corzilius B 2017 Prog. Nucl. Magn. Reson. Sp. 102 120Google Scholar

    [40]

    Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667Google Scholar

    [41]

    Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, Neven H 2018 Nat. Phys. 14 595Google Scholar

    [42]

    Dowling J P, Milburn G J 2003 P Roy. Soc. A-Math. Phy. 361 1655Google Scholar

    [43]

    Levitt M H 2008 Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons) pp611–613

    [44]

    Duer M J 2008 Solid State NMR Spectroscopy: Principles and Applications (John Wiley & Sons) p37

    [45]

    Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press) p105

    [46]

    王义遒 1964 物理学报 20 41Google Scholar

    Wang Y Q 1964 Acta Phys. Sin. 20 41Google Scholar

    [47]

    蒲鹏, 徐灿, 解淑玉 2011 物理化学学报 27 2227Google Scholar

    Pu P, Xu C, Xie S Y 2011 Acta Phys. -Chim. Sin. 27 2227Google Scholar

    [48]

    Resing H 1969 Molecular Crystals and Liquid Crystals 9 101Google Scholar

    [49]

    Krojanski H G, Suter D 2004 Phys. Rev. Lett. 93 090501Google Scholar

    [50]

    Krojanski H G, Suter D 2006 Phys. Rev. A 74 062319Google Scholar

    [51]

    Lovrić M, Krojanski H G, Suter D 2007 Phys. Rev. A 75 042305Google Scholar

    [52]

    Álvarez G A, Suter D 2011 Phys. Rev. Lett. 107 230501Google Scholar

    [53]

    Alvarez G A, Suter D 2011 Phys. Rev. A 84 012320Google Scholar

    [54]

    Álvarez G A, Kaiser R, Suter D 2013 Ann. Phys. 525 833Google Scholar

    [55]

    Sánchez C M, Chattah A K, Pastawski H M 2022 Phys. Rev. A 105 052232Google Scholar

    [56]

    Zhou T, Swingle B 2023 Nat. Commun. 14 3411Google Scholar

    [57]

    Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C, Viola L 2009 Phys. Rev. A 80 052323Google Scholar

    [58]

    Rufeil-Fiori E, Sánchez C M, Oliva F Y, Pastawski H M, Levstein P R 2009 Phys. Rev. A 79 032324Google Scholar

    [59]

    Peng P 2022 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology

    [60]

    Cappellaro P, Viola L, Ramanathan C 2011 Phys. Rev. A 83 032304Google Scholar

    [61]

    Maletinsky P, Kroner M, Imamoglu A 2009 Nat. Phys. 5 407Google Scholar

    [62]

    Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J, Roditi I 2015 Phys. Rev. Lett. 114 043604Google Scholar

    [63]

    Greilich A, Kopteva N E, Kamenskii A N, Sokolov P S, Korenev V L, Bayer M 2024 Nat. Phys. 20 631Google Scholar

    [64]

    Redfield A G 1965 Advances in Magnetic and Optical Resonance (Vol. 1) (Elsevier) pp1–32

    [65]

    Kowalewski J, Maler L 2017 Nuclear Spin Relaxation in Liquids: Theory, experiments, and applications (CRC Press) pp51–74

    [66]

    Gasbarri G, Ferialdi L 2018 Phys. Rev. A 98 042111Google Scholar

    [67]

    Wang P, Chen C, Peng X, Wrachtrup J, Liu R B 2019 Phys. Rev. Lett. 123 050603Google Scholar

    [68]

    Wu Z, Wang P, Wang T, Li Y, Liu R, Chen Y, Peng X, Liu R B 2024 Phys. Rev. Lett. 132 200802Google Scholar

    [69]

    Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H, Onoda S, Isoya J, Liu R B, Wrachtrup J 2022 Nat. Commun. 13 5318Google Scholar

    [70]

    Cheung B C H, Liu R B 2024 Adv. Quantum Technol. 1800057Google Scholar

    [71]

    Modi K, Cable H, Williamson M, Vedral V 2011 Phys. Rev. X 1 021022Google Scholar

    [72]

    McArthur D, Hahn E, Walstedt R 1969 Phys. Rev. 188 609Google Scholar

    [73]

    Demco D, Tegenfeldt J, Waugh J 1975 Phys. Rev. B 11 4133Google Scholar

    [74]

    Mehring M 2012 Principles of High Resolution NMR in Solids (Springer Science & Business Media) pp129–182

    [75]

    Kolodziejski W, Klinowski J 2002 Chem. Rev. 102 613Google Scholar

    [76]

    Slichter C, Holton W C 1961 Phys. Rev. 122 1701Google Scholar

    [77]

    Anderson A, Hartmann S 1962 Phys. Rev. 128 2023Google Scholar

    [78]

    Hediger S, Meier B, Kurur N D, Bodenhausen G, Ernst R 1994 Chem. Phys. Lett. 223 283Google Scholar

    [79]

    Hediger S, Meier B, Ernst R 1995 Chem. Phys. Lett. 240 449Google Scholar

    [80]

    Levitt M, Suter D, Ernst R 1986 J. Chem. Phys. 84 4243Google Scholar

    [81]

    Kim H, Cross T A, Fu R 2004 J. Magn. Reson. 168 147Google Scholar

    [82]

    Barbara T M, Williams E H 1992 J. Magn. Reson. 99 439Google Scholar

    [83]

    Hediger S, Meier B, Ernst R 1993 Chem. Phys. Lett. 213 627Google Scholar

    [84]

    Fu R, Pelupessy P, Bodenhausen G 1997 Chem. Phys. Lett. 264 63Google Scholar

    [85]

    Fu R, Hu J, Cross T A 2004 Journal of Magnetic Resonance 168 8Google Scholar

    [86]

    Overhauser A W 1953 Phys. Rev. 92 411Google Scholar

    [87]

    Abraham M, McCausland M, Robinson F 1959 Phys. Rev. Lett. 2 449Google Scholar

    [88]

    Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Van Der Wel P C, Herzfeld J, Temkin R J, Griffin R G 2008 J. Chem. Phys. 128 052211Google Scholar

    [89]

    Eickhoff M, Suter D 2004 J. Magn. Reson. 166 69Google Scholar

    [90]

    Lai C, Maletinsky P, Badolato A, Imamoglu A 2006 Phys. Rev. Lett. 96 167403Google Scholar

    [91]

    Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M 2014 P. Natl. A. Sci. 111 7527Google Scholar

    [92]

    Gao X Y, Vaidya S, Li K J, Ju P, Jiang B Y, Xu Z J, Allcca A E L, Shen K H, Taniguchi T, Watanabe K, Bhave S A, Chen Y P, Ping Y, Li T C 2022 Nat. Mater. 21 1024Google Scholar

    [93]

    Millington-Hotze P, Dyte H E, Manna S, Covre da Silva S F, Rastelli A, Chekhovich E A 2024 Nat. Commun. 15 985Google Scholar

    [94]

    Hautzinger M P, Pan X, Hayden S C, Ye J Y, Jiang Q, Wilson M J, Phillips A J, Dong Y, Raulerson E K, Leahy I A, Jiang C S, Blackburn J L, Luther J M, Lu Y, Jungjohann K, Vardeny Z V, Berry J J, Alberi K, Beard M C 2024 Nature 631 307Google Scholar

    [95]

    Cui J, Li J, Liu X, Peng X, Fu R 2018 J. Magn. Reson. 294 83Google Scholar

    [96]

    Haeberlen U, Waugh J S 1968 Phys. Rev. 175 453Google Scholar

    [97]

    Mori T, Kuwahara T, Saito K 2016 Phys. Rev. Lett. 116 120401Google Scholar

    [98]

    Abanin D A, De Roeck W, Ho W W, Huveneers F 2017 Phys. Rev. B 95 014112Google Scholar

    [99]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151Google Scholar

    [100]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139Google Scholar

    [101]

    Suter D, Liu S, Baum J, Pines A 1987 Chem. Phys. 114 103Google Scholar

    [102]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [103]

    Alvarez G A, Ajoy A, Peng X, Suter D 2010 Phys. Rev. A 82 042306Google Scholar

    [104]

    Yang W, Wang Z Y, Liu R B 2011 Front. Phys. China 6 2Google Scholar

    [105]

    Peng X, Suter D, Lidar D A 2011 J. Phys. B: At. Mol. Opt. 44 154003Google Scholar

    [106]

    Hahn E L 1950 Phys. Rev. 80 580Google Scholar

    [107]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [108]

    Meiboom S, Gill D 1958 Rev. Sci. Instrum. 29 688Google Scholar

    [109]

    Khodjasteh K, Lidar D A 2005 Phys. Rev. Lett. 95 180501Google Scholar

    [110]

    Uhrig G S 2007 Phys. Rev. Lett. 98 100504Google Scholar

    [111]

    Rhim W K, Pines A, Waugh J S 1970 Phys. Rev. Lett. 25 218Google Scholar

    [112]

    Waugh J S, Huber L M, Haeberlen U 1968 Phys. Rev. Lett. 20 180Google Scholar

    [113]

    Cory D, Miller J, Garroway A 1990 J. Magn. Reson. 90 205Google Scholar

    [114]

    Peng P, Huang X, Yin C, Joseph L, Ramanathan C, Cappellaro P 2022 Phys. Rev. Appl. 18 024033Google Scholar

    [115]

    Mehring M, Waugh J S 1972 Phys. Rev. B 5 3459Google Scholar

    [116]

    Li J, Fan R H, Wang H Y, Ye B T, Zeng B, Zhai H, Peng X H, Du J F 2017 Phys. Rev. X 7 031011Google Scholar

    [117]

    Schleier-Smith M 2017 Nat. Phys. 13 724Google Scholar

    [118]

    Landsman K A, Figgatt C, Schuster T, Linke N M, Yoshida B, Yao N Y, Monroe C 2019 Nature 567 61Google Scholar

    [119]

    潘健, 余琦, 彭新华 2017 物理学报 66 167601Google Scholar

    Pan J, Yu Q, Peng X H 2017 Acta Phys. Sin. 66 167601Google Scholar

    [120]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301Google Scholar

    [121]

    薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉 2002 物理学报 51 763Google Scholar

    Xue F, Du J F, Fan Y M, Shi M J, Zhou X Y, Han R D, Wu J H 2002 Acta Phys. Sin. 51 763Google Scholar

    [122]

    Suter D, Pearson J 1988 Chem. Phys. Lett. 144 328Google Scholar

    [123]

    van Beek J D, Carravetta M, Antonioli G C, Levitt M H 2005 Chem. Phys. Lett. 122 064314Google Scholar

    [124]

    Aue W P, Bartholdi E, Ernst R R 1976 J. Chem. Phys. 64 2229Google Scholar

    [125]

    Wokaun A, Ernst R R 1977 Chem. Phys. Lett. 52 407Google Scholar

    [126]

    Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D 1978 Faraday Symposia of the Chemical Society (Vol. 13) (Royal Society of Chemistry) pp49–55

    [127]

    Bodenhausen G 1980 P. Nucl. Magn. Reson. Sp. 14 137Google Scholar

    [128]

    Yen Y S, Pines A 1983 J. Chem. Phys. 78 3579Google Scholar

    [129]

    Baum J, Munowitz M, Garroway A N, Pines A 1985 J. Chem. Phys 83 2015Google Scholar

    [130]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

    [131]

    Turner C J, Michailidis A A, Abanin D A, Serbyn M, Papić Z 2018 Nat. Phys. 14 745Google Scholar

  • 图 1  (a) 金刚烷样品分子示意图; (b) 氟磷灰石样品原子排布示意图

    Fig. 1.  (a) Schematic diagram of adamantane molecule; (b) schematic diagram of the atomic configuration of a fluoroapatite sample.

    图 2  交叉极化的脉冲序列图[38] (a) HHCP; (b) DOCP; (c) ADCP; (d) AD/DO-CP

    Fig. 2.  Pulse sequences of cross polarization[38]: (a) HHCP; (b) DOCP; (c) ADCP; (d) AD/DO-CP.

    图 3  16脉冲序列

    Fig. 3.  16-pulse sequence

    图 4  Magic echo序列[111]

    Fig. 4.  Magic echo sequence[111]

    图 5  WAHUHA序列[112]

    Fig. 5.  WAHUHA sequence[112]

    图 6  魔角旋转示意图

    Fig. 6.  Schematic diagram of magic angle spinning

    图 7  魔角旋转条件下的偶极恢复脉冲序列[44]

    Fig. 7.  Pulse sequence of dipolar recovery at the magic angle[44].

    图 8  测量多量子相干的脉冲序列

    Fig. 8.  Pulse sequence for measurement of multiple quantum coherences

    表 1  利用8脉冲序列实现不同目标哈密顿量所对应的脉冲欧拉角设置

    Table 1.  Setup of the Euler angles of 8-pulse sequences for realizing different target Hamiltonians

    $ \hat{H}_{\rm tar} $ C 单位(π), $ n=1, 2, 3, 4 $
    $ \displaystyle\sum_{i<j}J_{ij}[2\hat{I}^i_z\hat{I}^j_z-\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $ 1 $ \beta_{n}=1, \gamma_n= {(n-1)}/{2} $
    –0.5 $ \beta_{n} = {1}/{2}, \gamma_n = {(n-1)}/{2} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $ 1 $ \beta_{n}=0.304, \gamma_n= [{1+4(-1)^n}]/{4} $
    –1 $ \beta_{n}=0.304, \gamma_n= [{3+4(-1)^n}]/{4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_z] $ 1/3 $ \beta_{n}=0.304, \gamma_n= [{3(-1)^n}]/{4} $
    –1/3 $ \beta_{n}=0.304, \gamma_n= {(-1)^n}/{4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_y+\hat{I}^i_y\hat{I}^j_z] $ 1/3 $ \beta_{n}=0.304, \gamma_n = [{2+(-1)^n}]/{4} $
    –1/3 $ \beta_{n}=0.304, \gamma_n= [{2+(-1)^n}]/({-4}) $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_y\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_y] $ 1 $ \beta_{n}=0.304, \gamma_n= [{1+(-1)^n}]/{2} $
    –1 $ \beta_{n}=0.304, \gamma_n = [{2+(-1)^n}]/{2} $
    下载: 导出CSV
  • [1]

    Lloyd S 1993 Science 261 1569Google Scholar

    [2]

    DiVincenzo D P 1995 Phys. Rev. A 51 1015Google Scholar

    [3]

    Cory D G, Fahmy A F, Havel T F 1997 P. Natl. A. Sci. 94 1634Google Scholar

    [4]

    Gershenfeld N A, Chuang I L 1997 Science 275 350Google Scholar

    [5]

    Jones J A 2011 Progress Nucl. Mag. Res. Sp. 59 91Google Scholar

    [6]

    Vandersypen L M, Chuang I L 2004 Rev. Mod. Phys. 76 1037Google Scholar

    [7]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser S J 2005 J. Magn. Reson. 172 296Google Scholar

    [8]

    Haeberlen U 2012 High Resolution NMR in Solids Selective Averaging: Supplement 1 Advances in Magnetic Resonance (Vol. 1) (Elsevier) pp1–186

    [9]

    Kane B E 1998 Nature 393 133Google Scholar

    [10]

    Pham L M, DeVience S J, Casola F, Lovchinsky I, Sushkov A O, Bersin E, Lee J, Urbach E, Cappellaro P, Park H, et al. 2016 Phys. Rev. B 93 045425Google Scholar

    [11]

    Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J, Rey A M 2017 Nat. Phys. 13 781Google Scholar

    [12]

    Geier S, Thaicharoen N, Hainaut C, Franz T, Salzinger A, Tebben A, Grimshandl D, Zürn G, Weidemüller M 2021 Science 374 1149Google Scholar

    [13]

    Miller C, Carroll A N, Lin J, Hirzler H, Gao H, Zhou H, Lukin M D, Ye J 2024 Nature 633 332Google Scholar

    [14]

    Warren W S 1997 Science 277 1688Google Scholar

    [15]

    Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein Y S, Zurek W H 2000 Fortschr. Phys. 48 875Google Scholar

    [16]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2015 物理学报 64 167601Google Scholar

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2015 Acta Phys. Sin. 64 167601Google Scholar

    [17]

    Krojanski H G, Suter D 2006 Phys. Rev. Lett. 97 150503Google Scholar

    [18]

    Cappellaro P, Emerson J, Boulant N, Ramanathan C, Lloyd S, Cory D G 2005 Phys. Rev. Lett. 94 020502Google Scholar

    [19]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349 846Google Scholar

    [20]

    Wei K X, Ramanathan C, Cappellaro P 2018 Phys. Rev. Lett. 120 070501Google Scholar

    [21]

    Rovny J, Blum R L, Barrett S E 2018 Physical review letters 120 180603Google Scholar

    [22]

    Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P 2019 Phys. Rev. Lett. 123 090605Google Scholar

    [23]

    Sánchez C M, Chattah A K, Wei K X, Buljubasich L, Cappellaro P, Pastawski H M 2020 Phys. Rev. Lett. 124 030601Google Scholar

    [24]

    Peng P, Yin C, Huang X, Ramanathan C, Cappellaro P 2021 Nat. Phys. 17 444Google Scholar

    [25]

    Peng P, Ye B, Yao N Y, Cappellaro P 2023 Nat. Phys. 19 1027Google Scholar

    [26]

    Stasiuk A, Cappellaro P 2023 Phys. Rev. X 13 041016Google Scholar

    [27]

    Li Y, Zhou T G, Wu Z, Peng P, Zhang S, Fu R, Zhang R, Zheng W, Zhang P, Zhai H, Peng X H, Du J F 2023 Nat. Phys. 20 1966

    [28]

    Cappellaro P, Ramanathan C, Cory D G 2007 Phys. Rev. Lett. 99 250506Google Scholar

    [29]

    Álvarez G A, Suter D 2010 Phys. Rev. Lett. 104 230403Google Scholar

    [30]

    Ramanathan C, Cappellaro P, Viola L, Cory D G 2011 New J. Phys. 13 103015Google Scholar

    [31]

    Kaur G, Cappellaro P 2012 New J. Phys. 14 083005Google Scholar

    [32]

    Ernst M 2003 J. Magn. Reson. 162 1Google Scholar

    [33]

    Souza A M, Álvarez G A, Suter D 2012 Philos. T. R. Soc. A 370 4748Google Scholar

    [34]

    Medek A, Harwood J S, Frydman L 1995 J. Am. Chem. So. 117 12779Google Scholar

    [35]

    Levitt M H, Grant D M, Harris R K 2007 Solid State NMR Studies of Biopolymers (Wiley John + Sons) pp83–108

    [36]

    Weingarth M, Demco D E, Bodenhausen G, Tekely P 2009 Chem. Phys. Lett. 469 342Google Scholar

    [37]

    Hartmann S, Hahn E 1962 Phys. Rev. 128 2042Google Scholar

    [38]

    Li Y C, Zhang S Y, Wu Z, Peng X H, Fu R Q 2022 Magn. Reson. Lett. 2 147Google Scholar

    [39]

    Thankamony A S L, Wittmann J J, Kaushik M, Corzilius B 2017 Prog. Nucl. Magn. Reson. Sp. 102 120Google Scholar

    [40]

    Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667Google Scholar

    [41]

    Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, Neven H 2018 Nat. Phys. 14 595Google Scholar

    [42]

    Dowling J P, Milburn G J 2003 P Roy. Soc. A-Math. Phy. 361 1655Google Scholar

    [43]

    Levitt M H 2008 Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons) pp611–613

    [44]

    Duer M J 2008 Solid State NMR Spectroscopy: Principles and Applications (John Wiley & Sons) p37

    [45]

    Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press) p105

    [46]

    王义遒 1964 物理学报 20 41Google Scholar

    Wang Y Q 1964 Acta Phys. Sin. 20 41Google Scholar

    [47]

    蒲鹏, 徐灿, 解淑玉 2011 物理化学学报 27 2227Google Scholar

    Pu P, Xu C, Xie S Y 2011 Acta Phys. -Chim. Sin. 27 2227Google Scholar

    [48]

    Resing H 1969 Molecular Crystals and Liquid Crystals 9 101Google Scholar

    [49]

    Krojanski H G, Suter D 2004 Phys. Rev. Lett. 93 090501Google Scholar

    [50]

    Krojanski H G, Suter D 2006 Phys. Rev. A 74 062319Google Scholar

    [51]

    Lovrić M, Krojanski H G, Suter D 2007 Phys. Rev. A 75 042305Google Scholar

    [52]

    Álvarez G A, Suter D 2011 Phys. Rev. Lett. 107 230501Google Scholar

    [53]

    Alvarez G A, Suter D 2011 Phys. Rev. A 84 012320Google Scholar

    [54]

    Álvarez G A, Kaiser R, Suter D 2013 Ann. Phys. 525 833Google Scholar

    [55]

    Sánchez C M, Chattah A K, Pastawski H M 2022 Phys. Rev. A 105 052232Google Scholar

    [56]

    Zhou T, Swingle B 2023 Nat. Commun. 14 3411Google Scholar

    [57]

    Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C, Viola L 2009 Phys. Rev. A 80 052323Google Scholar

    [58]

    Rufeil-Fiori E, Sánchez C M, Oliva F Y, Pastawski H M, Levstein P R 2009 Phys. Rev. A 79 032324Google Scholar

    [59]

    Peng P 2022 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology

    [60]

    Cappellaro P, Viola L, Ramanathan C 2011 Phys. Rev. A 83 032304Google Scholar

    [61]

    Maletinsky P, Kroner M, Imamoglu A 2009 Nat. Phys. 5 407Google Scholar

    [62]

    Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J, Roditi I 2015 Phys. Rev. Lett. 114 043604Google Scholar

    [63]

    Greilich A, Kopteva N E, Kamenskii A N, Sokolov P S, Korenev V L, Bayer M 2024 Nat. Phys. 20 631Google Scholar

    [64]

    Redfield A G 1965 Advances in Magnetic and Optical Resonance (Vol. 1) (Elsevier) pp1–32

    [65]

    Kowalewski J, Maler L 2017 Nuclear Spin Relaxation in Liquids: Theory, experiments, and applications (CRC Press) pp51–74

    [66]

    Gasbarri G, Ferialdi L 2018 Phys. Rev. A 98 042111Google Scholar

    [67]

    Wang P, Chen C, Peng X, Wrachtrup J, Liu R B 2019 Phys. Rev. Lett. 123 050603Google Scholar

    [68]

    Wu Z, Wang P, Wang T, Li Y, Liu R, Chen Y, Peng X, Liu R B 2024 Phys. Rev. Lett. 132 200802Google Scholar

    [69]

    Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H, Onoda S, Isoya J, Liu R B, Wrachtrup J 2022 Nat. Commun. 13 5318Google Scholar

    [70]

    Cheung B C H, Liu R B 2024 Adv. Quantum Technol. 1800057Google Scholar

    [71]

    Modi K, Cable H, Williamson M, Vedral V 2011 Phys. Rev. X 1 021022Google Scholar

    [72]

    McArthur D, Hahn E, Walstedt R 1969 Phys. Rev. 188 609Google Scholar

    [73]

    Demco D, Tegenfeldt J, Waugh J 1975 Phys. Rev. B 11 4133Google Scholar

    [74]

    Mehring M 2012 Principles of High Resolution NMR in Solids (Springer Science & Business Media) pp129–182

    [75]

    Kolodziejski W, Klinowski J 2002 Chem. Rev. 102 613Google Scholar

    [76]

    Slichter C, Holton W C 1961 Phys. Rev. 122 1701Google Scholar

    [77]

    Anderson A, Hartmann S 1962 Phys. Rev. 128 2023Google Scholar

    [78]

    Hediger S, Meier B, Kurur N D, Bodenhausen G, Ernst R 1994 Chem. Phys. Lett. 223 283Google Scholar

    [79]

    Hediger S, Meier B, Ernst R 1995 Chem. Phys. Lett. 240 449Google Scholar

    [80]

    Levitt M, Suter D, Ernst R 1986 J. Chem. Phys. 84 4243Google Scholar

    [81]

    Kim H, Cross T A, Fu R 2004 J. Magn. Reson. 168 147Google Scholar

    [82]

    Barbara T M, Williams E H 1992 J. Magn. Reson. 99 439Google Scholar

    [83]

    Hediger S, Meier B, Ernst R 1993 Chem. Phys. Lett. 213 627Google Scholar

    [84]

    Fu R, Pelupessy P, Bodenhausen G 1997 Chem. Phys. Lett. 264 63Google Scholar

    [85]

    Fu R, Hu J, Cross T A 2004 Journal of Magnetic Resonance 168 8Google Scholar

    [86]

    Overhauser A W 1953 Phys. Rev. 92 411Google Scholar

    [87]

    Abraham M, McCausland M, Robinson F 1959 Phys. Rev. Lett. 2 449Google Scholar

    [88]

    Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Van Der Wel P C, Herzfeld J, Temkin R J, Griffin R G 2008 J. Chem. Phys. 128 052211Google Scholar

    [89]

    Eickhoff M, Suter D 2004 J. Magn. Reson. 166 69Google Scholar

    [90]

    Lai C, Maletinsky P, Badolato A, Imamoglu A 2006 Phys. Rev. Lett. 96 167403Google Scholar

    [91]

    Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M 2014 P. Natl. A. Sci. 111 7527Google Scholar

    [92]

    Gao X Y, Vaidya S, Li K J, Ju P, Jiang B Y, Xu Z J, Allcca A E L, Shen K H, Taniguchi T, Watanabe K, Bhave S A, Chen Y P, Ping Y, Li T C 2022 Nat. Mater. 21 1024Google Scholar

    [93]

    Millington-Hotze P, Dyte H E, Manna S, Covre da Silva S F, Rastelli A, Chekhovich E A 2024 Nat. Commun. 15 985Google Scholar

    [94]

    Hautzinger M P, Pan X, Hayden S C, Ye J Y, Jiang Q, Wilson M J, Phillips A J, Dong Y, Raulerson E K, Leahy I A, Jiang C S, Blackburn J L, Luther J M, Lu Y, Jungjohann K, Vardeny Z V, Berry J J, Alberi K, Beard M C 2024 Nature 631 307Google Scholar

    [95]

    Cui J, Li J, Liu X, Peng X, Fu R 2018 J. Magn. Reson. 294 83Google Scholar

    [96]

    Haeberlen U, Waugh J S 1968 Phys. Rev. 175 453Google Scholar

    [97]

    Mori T, Kuwahara T, Saito K 2016 Phys. Rev. Lett. 116 120401Google Scholar

    [98]

    Abanin D A, De Roeck W, Ho W W, Huveneers F 2017 Phys. Rev. B 95 014112Google Scholar

    [99]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151Google Scholar

    [100]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139Google Scholar

    [101]

    Suter D, Liu S, Baum J, Pines A 1987 Chem. Phys. 114 103Google Scholar

    [102]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [103]

    Alvarez G A, Ajoy A, Peng X, Suter D 2010 Phys. Rev. A 82 042306Google Scholar

    [104]

    Yang W, Wang Z Y, Liu R B 2011 Front. Phys. China 6 2Google Scholar

    [105]

    Peng X, Suter D, Lidar D A 2011 J. Phys. B: At. Mol. Opt. 44 154003Google Scholar

    [106]

    Hahn E L 1950 Phys. Rev. 80 580Google Scholar

    [107]

    Carr H Y, Purcell E M 1954 Phys. Rev. 94 630Google Scholar

    [108]

    Meiboom S, Gill D 1958 Rev. Sci. Instrum. 29 688Google Scholar

    [109]

    Khodjasteh K, Lidar D A 2005 Phys. Rev. Lett. 95 180501Google Scholar

    [110]

    Uhrig G S 2007 Phys. Rev. Lett. 98 100504Google Scholar

    [111]

    Rhim W K, Pines A, Waugh J S 1970 Phys. Rev. Lett. 25 218Google Scholar

    [112]

    Waugh J S, Huber L M, Haeberlen U 1968 Phys. Rev. Lett. 20 180Google Scholar

    [113]

    Cory D, Miller J, Garroway A 1990 J. Magn. Reson. 90 205Google Scholar

    [114]

    Peng P, Huang X, Yin C, Joseph L, Ramanathan C, Cappellaro P 2022 Phys. Rev. Appl. 18 024033Google Scholar

    [115]

    Mehring M, Waugh J S 1972 Phys. Rev. B 5 3459Google Scholar

    [116]

    Li J, Fan R H, Wang H Y, Ye B T, Zeng B, Zhai H, Peng X H, Du J F 2017 Phys. Rev. X 7 031011Google Scholar

    [117]

    Schleier-Smith M 2017 Nat. Phys. 13 724Google Scholar

    [118]

    Landsman K A, Figgatt C, Schuster T, Linke N M, Yoshida B, Yao N Y, Monroe C 2019 Nature 567 61Google Scholar

    [119]

    潘健, 余琦, 彭新华 2017 物理学报 66 167601Google Scholar

    Pan J, Yu Q, Peng X H 2017 Acta Phys. Sin. 66 167601Google Scholar

    [120]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301Google Scholar

    [121]

    薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉 2002 物理学报 51 763Google Scholar

    Xue F, Du J F, Fan Y M, Shi M J, Zhou X Y, Han R D, Wu J H 2002 Acta Phys. Sin. 51 763Google Scholar

    [122]

    Suter D, Pearson J 1988 Chem. Phys. Lett. 144 328Google Scholar

    [123]

    van Beek J D, Carravetta M, Antonioli G C, Levitt M H 2005 Chem. Phys. Lett. 122 064314Google Scholar

    [124]

    Aue W P, Bartholdi E, Ernst R R 1976 J. Chem. Phys. 64 2229Google Scholar

    [125]

    Wokaun A, Ernst R R 1977 Chem. Phys. Lett. 52 407Google Scholar

    [126]

    Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D 1978 Faraday Symposia of the Chemical Society (Vol. 13) (Royal Society of Chemistry) pp49–55

    [127]

    Bodenhausen G 1980 P. Nucl. Magn. Reson. Sp. 14 137Google Scholar

    [128]

    Yen Y S, Pines A 1983 J. Chem. Phys. 78 3579Google Scholar

    [129]

    Baum J, Munowitz M, Garroway A N, Pines A 1985 J. Chem. Phys 83 2015Google Scholar

    [130]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

    [131]

    Turner C J, Michailidis A A, Abanin D A, Serbyn M, Papić Z 2018 Nat. Phys. 14 745Google Scholar

  • [1] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [2] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [3] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [4] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [5] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [6] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [7] 李廷伟, 荣星, 杜江峰. 固态单自旋量子控制研究进展. 物理学报, 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [8] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [9] 鹿博, 王大军. 超冷极性分子. 物理学报, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [10] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [11] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程. 物理学报, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [12] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [13] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [14] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [15] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [16] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [17] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [18] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [19] 任韧, 徐进, 任大男. 半导体核磁共振显微压力的质子全自旋量子门的实现. 物理学报, 2010, 59(11): 8155-8159. doi: 10.7498/aps.59.8155
    [20] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制. 物理学报, 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
计量
  • 文章访问数:  317
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-02-13
  • 上网日期:  2025-03-12
  • 刊出日期:  2025-04-05

/

返回文章
返回