-
作为一种物质表征的重要技术手段, 固态核磁共振已经在物理学、材料科学、化学、生物学等多个学科领域得到广泛的应用. 近年来, 得益于固态核磁共振体系中丰富的多体相互作用和多样的脉冲控制手段, 该技术逐渐在前沿的量子科技中展现出重要的研究价值和应用潜力. 本文系统性地介绍了固态核磁共振体系的研究对象和理论基础, 包括该系统中重要的核自旋相互作用机理及其哈密顿量形式, 列举了动力学解耦、魔角旋转等典型的固态核自旋动力学调控手段. 此外, 我们重点展示了近年来在固态核磁共振量子控制方面取得的前沿进展, 包括核自旋极化增强技术、弗洛凯哈密顿量的调控技术等. 最后, 我们结合一些重要的研究工作阐述了固态核磁共振量子控制技术在量子模拟领域中的应用.Solid-state nuclear magnetic resonance (NMR) has emerged as an important technique for material characterization, finding extensive applications across a diverse range of disciplines including physics, materials science, chemistry, and biology. Its utility stems from the ability to probe the local atomic environments and molecular dynamics within solid materials, which provides information on the composition of the material. In recent years, the scope of solid-state NMR has expanded into the realm of quantum information science and technology, where its abundant many-body interactions pulse control methodologies make it have significant research value and application potential. This paper offers a comprehensive overview of the research objects and theoretical underpinnings of solid-state NMR, delving into the critical nuclear spin interaction mechanisms and their corresponding Hamiltonian forms. These interactions, which include dipolar coupling, chemical shift anisotropy, and quadrupolar interactions, are fundamental to the interpretation of NMR spectra and the understanding of material properties at the atomic level. Moreover, the paper introduces typical dynamical control methods employed in the manipulation of solid-state nuclear spins. Techniques such as dynamical decoupling, which mitigates the effects of spin-spin interactions to extend coherence times, and magic-angle spinning, which averages out anisotropic interactions to yield high-resolution spectra. These methods are essential for enhancing the sensitivity and resolution of NMR experiments, enabling the extraction of detailed structural and dynamic information from complex materials. Then we introduce some recent advancements in quantum control based on solid-state NMR, such as nuclear spin polarization enhancement techniques, which include dynamic nuclear polarization (DNP) and cross polarization (CP), significantly boost the sensitivity of NMR measurements. Additionally, the control techniques of Floquet average Hamiltonians are mentioned, showcasing their role in the precise manipulation of quantum states and the realization of quantum dynamics. Finally, the paper presents a series of seminal research works that illustrate the application of solid-state NMR quantum control technologies in the field of quantum simulation. These studies demonstrate how solid-state NMR can be leveraged to simulate and investigate quantum many-body systems, providing valuable insights into quantum phase transitions, entanglement dynamics, and other phenomena relevant to quantum information science. By bridging the gap between fundamental research and practical applications, solid-state NMR continues to play a crucial role in advancing our understanding of quantum materials and technologies.
-
Keywords:
- solid-state nuclear magnetic resonance /
- quantum control /
- nuclear spin interactions /
- quantum simulation
[1] Lloyd S 1993 Science 261 1569
Google Scholar
[2] DiVincenzo D P 1995 Phys. Rev. A 51 1015
Google Scholar
[3] Cory D G, Fahmy A F, Havel T F 1997 P. Natl. A. Sci. 94 1634
Google Scholar
[4] Gershenfeld N A, Chuang I L 1997 Science 275 350
Google Scholar
[5] Jones J A 2011 Progress Nucl. Mag. Res. Sp. 59 91
Google Scholar
[6] Vandersypen L M, Chuang I L 2004 Rev. Mod. Phys. 76 1037
Google Scholar
[7] Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser S J 2005 J. Magn. Reson. 172 296
Google Scholar
[8] Haeberlen U 2012 High Resolution NMR in Solids Selective Averaging: Supplement 1 Advances in Magnetic Resonance (Vol. 1) (Elsevier) pp1–186
[9] Kane B E 1998 Nature 393 133
Google Scholar
[10] Pham L M, DeVience S J, Casola F, Lovchinsky I, Sushkov A O, Bersin E, Lee J, Urbach E, Cappellaro P, Park H, et al. 2016 Phys. Rev. B 93 045425
Google Scholar
[11] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J, Rey A M 2017 Nat. Phys. 13 781
Google Scholar
[12] Geier S, Thaicharoen N, Hainaut C, Franz T, Salzinger A, Tebben A, Grimshandl D, Zürn G, Weidemüller M 2021 Science 374 1149
Google Scholar
[13] Miller C, Carroll A N, Lin J, Hirzler H, Gao H, Zhou H, Lukin M D, Ye J 2024 Nature 633 332
Google Scholar
[14] Warren W S 1997 Science 277 1688
Google Scholar
[15] Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein Y S, Zurek W H 2000 Fortschr. Phys. 48 875
Google Scholar
[16] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2015 物理学报 64 167601
Google Scholar
Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2015 Acta Phys. Sin. 64 167601
Google Scholar
[17] Krojanski H G, Suter D 2006 Phys. Rev. Lett. 97 150503
Google Scholar
[18] Cappellaro P, Emerson J, Boulant N, Ramanathan C, Lloyd S, Cory D G 2005 Phys. Rev. Lett. 94 020502
Google Scholar
[19] Álvarez G A, Suter D, Kaiser R 2015 Science 349 846
Google Scholar
[20] Wei K X, Ramanathan C, Cappellaro P 2018 Phys. Rev. Lett. 120 070501
Google Scholar
[21] Rovny J, Blum R L, Barrett S E 2018 Physical review letters 120 180603
Google Scholar
[22] Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P 2019 Phys. Rev. Lett. 123 090605
Google Scholar
[23] Sánchez C M, Chattah A K, Wei K X, Buljubasich L, Cappellaro P, Pastawski H M 2020 Phys. Rev. Lett. 124 030601
Google Scholar
[24] Peng P, Yin C, Huang X, Ramanathan C, Cappellaro P 2021 Nat. Phys. 17 444
Google Scholar
[25] Peng P, Ye B, Yao N Y, Cappellaro P 2023 Nat. Phys. 19 1027
Google Scholar
[26] Stasiuk A, Cappellaro P 2023 Phys. Rev. X 13 041016
Google Scholar
[27] Li Y, Zhou T G, Wu Z, Peng P, Zhang S, Fu R, Zhang R, Zheng W, Zhang P, Zhai H, Peng X H, Du J F 2023 Nat. Phys. 20 1966
[28] Cappellaro P, Ramanathan C, Cory D G 2007 Phys. Rev. Lett. 99 250506
Google Scholar
[29] Álvarez G A, Suter D 2010 Phys. Rev. Lett. 104 230403
Google Scholar
[30] Ramanathan C, Cappellaro P, Viola L, Cory D G 2011 New J. Phys. 13 103015
Google Scholar
[31] Kaur G, Cappellaro P 2012 New J. Phys. 14 083005
Google Scholar
[32] Ernst M 2003 J. Magn. Reson. 162 1
Google Scholar
[33] Souza A M, Álvarez G A, Suter D 2012 Philos. T. R. Soc. A 370 4748
Google Scholar
[34] Medek A, Harwood J S, Frydman L 1995 J. Am. Chem. So. 117 12779
Google Scholar
[35] Levitt M H, Grant D M, Harris R K 2007 Solid State NMR Studies of Biopolymers (Wiley John + Sons) pp83–108
[36] Weingarth M, Demco D E, Bodenhausen G, Tekely P 2009 Chem. Phys. Lett. 469 342
Google Scholar
[37] Hartmann S, Hahn E 1962 Phys. Rev. 128 2042
Google Scholar
[38] Li Y C, Zhang S Y, Wu Z, Peng X H, Fu R Q 2022 Magn. Reson. Lett. 2 147
Google Scholar
[39] Thankamony A S L, Wittmann J J, Kaushik M, Corzilius B 2017 Prog. Nucl. Magn. Reson. Sp. 102 120
Google Scholar
[40] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667
Google Scholar
[41] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, Neven H 2018 Nat. Phys. 14 595
Google Scholar
[42] Dowling J P, Milburn G J 2003 P Roy. Soc. A-Math. Phy. 361 1655
Google Scholar
[43] Levitt M H 2008 Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons) pp611–613
[44] Duer M J 2008 Solid State NMR Spectroscopy: Principles and Applications (John Wiley & Sons) p37
[45] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press) p105
[46] 王义遒 1964 物理学报 20 41
Google Scholar
Wang Y Q 1964 Acta Phys. Sin. 20 41
Google Scholar
[47] 蒲鹏, 徐灿, 解淑玉 2011 物理化学学报 27 2227
Google Scholar
Pu P, Xu C, Xie S Y 2011 Acta Phys. -Chim. Sin. 27 2227
Google Scholar
[48] Resing H 1969 Molecular Crystals and Liquid Crystals 9 101
Google Scholar
[49] Krojanski H G, Suter D 2004 Phys. Rev. Lett. 93 090501
Google Scholar
[50] Krojanski H G, Suter D 2006 Phys. Rev. A 74 062319
Google Scholar
[51] Lovrić M, Krojanski H G, Suter D 2007 Phys. Rev. A 75 042305
Google Scholar
[52] Álvarez G A, Suter D 2011 Phys. Rev. Lett. 107 230501
Google Scholar
[53] Alvarez G A, Suter D 2011 Phys. Rev. A 84 012320
Google Scholar
[54] Álvarez G A, Kaiser R, Suter D 2013 Ann. Phys. 525 833
Google Scholar
[55] Sánchez C M, Chattah A K, Pastawski H M 2022 Phys. Rev. A 105 052232
Google Scholar
[56] Zhou T, Swingle B 2023 Nat. Commun. 14 3411
Google Scholar
[57] Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C, Viola L 2009 Phys. Rev. A 80 052323
Google Scholar
[58] Rufeil-Fiori E, Sánchez C M, Oliva F Y, Pastawski H M, Levstein P R 2009 Phys. Rev. A 79 032324
Google Scholar
[59] Peng P 2022 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology
[60] Cappellaro P, Viola L, Ramanathan C 2011 Phys. Rev. A 83 032304
Google Scholar
[61] Maletinsky P, Kroner M, Imamoglu A 2009 Nat. Phys. 5 407
Google Scholar
[62] Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J, Roditi I 2015 Phys. Rev. Lett. 114 043604
Google Scholar
[63] Greilich A, Kopteva N E, Kamenskii A N, Sokolov P S, Korenev V L, Bayer M 2024 Nat. Phys. 20 631
Google Scholar
[64] Redfield A G 1965 Advances in Magnetic and Optical Resonance (Vol. 1) (Elsevier) pp1–32
[65] Kowalewski J, Maler L 2017 Nuclear Spin Relaxation in Liquids: Theory, experiments, and applications (CRC Press) pp51–74
[66] Gasbarri G, Ferialdi L 2018 Phys. Rev. A 98 042111
Google Scholar
[67] Wang P, Chen C, Peng X, Wrachtrup J, Liu R B 2019 Phys. Rev. Lett. 123 050603
Google Scholar
[68] Wu Z, Wang P, Wang T, Li Y, Liu R, Chen Y, Peng X, Liu R B 2024 Phys. Rev. Lett. 132 200802
Google Scholar
[69] Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H, Onoda S, Isoya J, Liu R B, Wrachtrup J 2022 Nat. Commun. 13 5318
Google Scholar
[70] Cheung B C H, Liu R B 2024 Adv. Quantum Technol. 1800057
Google Scholar
[71] Modi K, Cable H, Williamson M, Vedral V 2011 Phys. Rev. X 1 021022
Google Scholar
[72] McArthur D, Hahn E, Walstedt R 1969 Phys. Rev. 188 609
Google Scholar
[73] Demco D, Tegenfeldt J, Waugh J 1975 Phys. Rev. B 11 4133
Google Scholar
[74] Mehring M 2012 Principles of High Resolution NMR in Solids (Springer Science & Business Media) pp129–182
[75] Kolodziejski W, Klinowski J 2002 Chem. Rev. 102 613
Google Scholar
[76] Slichter C, Holton W C 1961 Phys. Rev. 122 1701
Google Scholar
[77] Anderson A, Hartmann S 1962 Phys. Rev. 128 2023
Google Scholar
[78] Hediger S, Meier B, Kurur N D, Bodenhausen G, Ernst R 1994 Chem. Phys. Lett. 223 283
Google Scholar
[79] Hediger S, Meier B, Ernst R 1995 Chem. Phys. Lett. 240 449
Google Scholar
[80] Levitt M, Suter D, Ernst R 1986 J. Chem. Phys. 84 4243
Google Scholar
[81] Kim H, Cross T A, Fu R 2004 J. Magn. Reson. 168 147
Google Scholar
[82] Barbara T M, Williams E H 1992 J. Magn. Reson. 99 439
Google Scholar
[83] Hediger S, Meier B, Ernst R 1993 Chem. Phys. Lett. 213 627
Google Scholar
[84] Fu R, Pelupessy P, Bodenhausen G 1997 Chem. Phys. Lett. 264 63
Google Scholar
[85] Fu R, Hu J, Cross T A 2004 Journal of Magnetic Resonance 168 8
Google Scholar
[86] Overhauser A W 1953 Phys. Rev. 92 411
Google Scholar
[87] Abraham M, McCausland M, Robinson F 1959 Phys. Rev. Lett. 2 449
Google Scholar
[88] Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Van Der Wel P C, Herzfeld J, Temkin R J, Griffin R G 2008 J. Chem. Phys. 128 052211
Google Scholar
[89] Eickhoff M, Suter D 2004 J. Magn. Reson. 166 69
Google Scholar
[90] Lai C, Maletinsky P, Badolato A, Imamoglu A 2006 Phys. Rev. Lett. 96 167403
Google Scholar
[91] Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M 2014 P. Natl. A. Sci. 111 7527
Google Scholar
[92] Gao X Y, Vaidya S, Li K J, Ju P, Jiang B Y, Xu Z J, Allcca A E L, Shen K H, Taniguchi T, Watanabe K, Bhave S A, Chen Y P, Ping Y, Li T C 2022 Nat. Mater. 21 1024
Google Scholar
[93] Millington-Hotze P, Dyte H E, Manna S, Covre da Silva S F, Rastelli A, Chekhovich E A 2024 Nat. Commun. 15 985
Google Scholar
[94] Hautzinger M P, Pan X, Hayden S C, Ye J Y, Jiang Q, Wilson M J, Phillips A J, Dong Y, Raulerson E K, Leahy I A, Jiang C S, Blackburn J L, Luther J M, Lu Y, Jungjohann K, Vardeny Z V, Berry J J, Alberi K, Beard M C 2024 Nature 631 307
Google Scholar
[95] Cui J, Li J, Liu X, Peng X, Fu R 2018 J. Magn. Reson. 294 83
Google Scholar
[96] Haeberlen U, Waugh J S 1968 Phys. Rev. 175 453
Google Scholar
[97] Mori T, Kuwahara T, Saito K 2016 Phys. Rev. Lett. 116 120401
Google Scholar
[98] Abanin D A, De Roeck W, Ho W W, Huveneers F 2017 Phys. Rev. B 95 014112
Google Scholar
[99] Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151
Google Scholar
[100] Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139
Google Scholar
[101] Suter D, Liu S, Baum J, Pines A 1987 Chem. Phys. 114 103
Google Scholar
[102] Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417
Google Scholar
[103] Alvarez G A, Ajoy A, Peng X, Suter D 2010 Phys. Rev. A 82 042306
Google Scholar
[104] Yang W, Wang Z Y, Liu R B 2011 Front. Phys. China 6 2
Google Scholar
[105] Peng X, Suter D, Lidar D A 2011 J. Phys. B: At. Mol. Opt. 44 154003
Google Scholar
[106] Hahn E L 1950 Phys. Rev. 80 580
Google Scholar
[107] Carr H Y, Purcell E M 1954 Phys. Rev. 94 630
Google Scholar
[108] Meiboom S, Gill D 1958 Rev. Sci. Instrum. 29 688
Google Scholar
[109] Khodjasteh K, Lidar D A 2005 Phys. Rev. Lett. 95 180501
Google Scholar
[110] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
Google Scholar
[111] Rhim W K, Pines A, Waugh J S 1970 Phys. Rev. Lett. 25 218
Google Scholar
[112] Waugh J S, Huber L M, Haeberlen U 1968 Phys. Rev. Lett. 20 180
Google Scholar
[113] Cory D, Miller J, Garroway A 1990 J. Magn. Reson. 90 205
Google Scholar
[114] Peng P, Huang X, Yin C, Joseph L, Ramanathan C, Cappellaro P 2022 Phys. Rev. Appl. 18 024033
Google Scholar
[115] Mehring M, Waugh J S 1972 Phys. Rev. B 5 3459
Google Scholar
[116] Li J, Fan R H, Wang H Y, Ye B T, Zeng B, Zhai H, Peng X H, Du J F 2017 Phys. Rev. X 7 031011
Google Scholar
[117] Schleier-Smith M 2017 Nat. Phys. 13 724
Google Scholar
[118] Landsman K A, Figgatt C, Schuster T, Linke N M, Yoshida B, Yao N Y, Monroe C 2019 Nature 567 61
Google Scholar
[119] 潘健, 余琦, 彭新华 2017 物理学报 66 167601
Google Scholar
Pan J, Yu Q, Peng X H 2017 Acta Phys. Sin. 66 167601
Google Scholar
[120] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301
Google Scholar
Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301
Google Scholar
[121] 薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉 2002 物理学报 51 763
Google Scholar
Xue F, Du J F, Fan Y M, Shi M J, Zhou X Y, Han R D, Wu J H 2002 Acta Phys. Sin. 51 763
Google Scholar
[122] Suter D, Pearson J 1988 Chem. Phys. Lett. 144 328
Google Scholar
[123] van Beek J D, Carravetta M, Antonioli G C, Levitt M H 2005 Chem. Phys. Lett. 122 064314
Google Scholar
[124] Aue W P, Bartholdi E, Ernst R R 1976 J. Chem. Phys. 64 2229
Google Scholar
[125] Wokaun A, Ernst R R 1977 Chem. Phys. Lett. 52 407
Google Scholar
[126] Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D 1978 Faraday Symposia of the Chemical Society (Vol. 13) (Royal Society of Chemistry) pp49–55
[127] Bodenhausen G 1980 P. Nucl. Magn. Reson. Sp. 14 137
Google Scholar
[128] Yen Y S, Pines A 1983 J. Chem. Phys. 78 3579
Google Scholar
[129] Baum J, Munowitz M, Garroway A N, Pines A 1985 J. Chem. Phys 83 2015
Google Scholar
[130] Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001
Google Scholar
[131] Turner C J, Michailidis A A, Abanin D A, Serbyn M, Papić Z 2018 Nat. Phys. 14 745
Google Scholar
-
表 1 利用8脉冲序列实现不同目标哈密顿量所对应的脉冲欧拉角设置
Table 1. Setup of the Euler angles of 8-pulse sequences for realizing different target Hamiltonians
$ \hat{H}_{\rm tar} $ C 单位(π), $ n=1, 2, 3, 4 $ $ \displaystyle\sum_{i<j}J_{ij}[2\hat{I}^i_z\hat{I}^j_z-\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $ 1 $ \beta_{n}=1, \gamma_n= {(n-1)}/{2} $ –0.5 $ \beta_{n} = {1}/{2}, \gamma_n = {(n-1)}/{2} $ $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $ 1 $ \beta_{n}=0.304, \gamma_n= [{1+4(-1)^n}]/{4} $ –1 $ \beta_{n}=0.304, \gamma_n= [{3+4(-1)^n}]/{4} $ $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_z] $ 1/3 $ \beta_{n}=0.304, \gamma_n= [{3(-1)^n}]/{4} $ –1/3 $ \beta_{n}=0.304, \gamma_n= {(-1)^n}/{4} $ $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_y+\hat{I}^i_y\hat{I}^j_z] $ 1/3 $ \beta_{n}=0.304, \gamma_n = [{2+(-1)^n}]/{4} $ –1/3 $ \beta_{n}=0.304, \gamma_n= [{2+(-1)^n}]/({-4}) $ $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_y\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_y] $ 1 $ \beta_{n}=0.304, \gamma_n= [{1+(-1)^n}]/{2} $ –1 $ \beta_{n}=0.304, \gamma_n = [{2+(-1)^n}]/{2} $ -
[1] Lloyd S 1993 Science 261 1569
Google Scholar
[2] DiVincenzo D P 1995 Phys. Rev. A 51 1015
Google Scholar
[3] Cory D G, Fahmy A F, Havel T F 1997 P. Natl. A. Sci. 94 1634
Google Scholar
[4] Gershenfeld N A, Chuang I L 1997 Science 275 350
Google Scholar
[5] Jones J A 2011 Progress Nucl. Mag. Res. Sp. 59 91
Google Scholar
[6] Vandersypen L M, Chuang I L 2004 Rev. Mod. Phys. 76 1037
Google Scholar
[7] Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser S J 2005 J. Magn. Reson. 172 296
Google Scholar
[8] Haeberlen U 2012 High Resolution NMR in Solids Selective Averaging: Supplement 1 Advances in Magnetic Resonance (Vol. 1) (Elsevier) pp1–186
[9] Kane B E 1998 Nature 393 133
Google Scholar
[10] Pham L M, DeVience S J, Casola F, Lovchinsky I, Sushkov A O, Bersin E, Lee J, Urbach E, Cappellaro P, Park H, et al. 2016 Phys. Rev. B 93 045425
Google Scholar
[11] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J, Rey A M 2017 Nat. Phys. 13 781
Google Scholar
[12] Geier S, Thaicharoen N, Hainaut C, Franz T, Salzinger A, Tebben A, Grimshandl D, Zürn G, Weidemüller M 2021 Science 374 1149
Google Scholar
[13] Miller C, Carroll A N, Lin J, Hirzler H, Gao H, Zhou H, Lukin M D, Ye J 2024 Nature 633 332
Google Scholar
[14] Warren W S 1997 Science 277 1688
Google Scholar
[15] Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein Y S, Zurek W H 2000 Fortschr. Phys. 48 875
Google Scholar
[16] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2015 物理学报 64 167601
Google Scholar
Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2015 Acta Phys. Sin. 64 167601
Google Scholar
[17] Krojanski H G, Suter D 2006 Phys. Rev. Lett. 97 150503
Google Scholar
[18] Cappellaro P, Emerson J, Boulant N, Ramanathan C, Lloyd S, Cory D G 2005 Phys. Rev. Lett. 94 020502
Google Scholar
[19] Álvarez G A, Suter D, Kaiser R 2015 Science 349 846
Google Scholar
[20] Wei K X, Ramanathan C, Cappellaro P 2018 Phys. Rev. Lett. 120 070501
Google Scholar
[21] Rovny J, Blum R L, Barrett S E 2018 Physical review letters 120 180603
Google Scholar
[22] Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P 2019 Phys. Rev. Lett. 123 090605
Google Scholar
[23] Sánchez C M, Chattah A K, Wei K X, Buljubasich L, Cappellaro P, Pastawski H M 2020 Phys. Rev. Lett. 124 030601
Google Scholar
[24] Peng P, Yin C, Huang X, Ramanathan C, Cappellaro P 2021 Nat. Phys. 17 444
Google Scholar
[25] Peng P, Ye B, Yao N Y, Cappellaro P 2023 Nat. Phys. 19 1027
Google Scholar
[26] Stasiuk A, Cappellaro P 2023 Phys. Rev. X 13 041016
Google Scholar
[27] Li Y, Zhou T G, Wu Z, Peng P, Zhang S, Fu R, Zhang R, Zheng W, Zhang P, Zhai H, Peng X H, Du J F 2023 Nat. Phys. 20 1966
[28] Cappellaro P, Ramanathan C, Cory D G 2007 Phys. Rev. Lett. 99 250506
Google Scholar
[29] Álvarez G A, Suter D 2010 Phys. Rev. Lett. 104 230403
Google Scholar
[30] Ramanathan C, Cappellaro P, Viola L, Cory D G 2011 New J. Phys. 13 103015
Google Scholar
[31] Kaur G, Cappellaro P 2012 New J. Phys. 14 083005
Google Scholar
[32] Ernst M 2003 J. Magn. Reson. 162 1
Google Scholar
[33] Souza A M, Álvarez G A, Suter D 2012 Philos. T. R. Soc. A 370 4748
Google Scholar
[34] Medek A, Harwood J S, Frydman L 1995 J. Am. Chem. So. 117 12779
Google Scholar
[35] Levitt M H, Grant D M, Harris R K 2007 Solid State NMR Studies of Biopolymers (Wiley John + Sons) pp83–108
[36] Weingarth M, Demco D E, Bodenhausen G, Tekely P 2009 Chem. Phys. Lett. 469 342
Google Scholar
[37] Hartmann S, Hahn E 1962 Phys. Rev. 128 2042
Google Scholar
[38] Li Y C, Zhang S Y, Wu Z, Peng X H, Fu R Q 2022 Magn. Reson. Lett. 2 147
Google Scholar
[39] Thankamony A S L, Wittmann J J, Kaushik M, Corzilius B 2017 Prog. Nucl. Magn. Reson. Sp. 102 120
Google Scholar
[40] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667
Google Scholar
[41] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, Neven H 2018 Nat. Phys. 14 595
Google Scholar
[42] Dowling J P, Milburn G J 2003 P Roy. Soc. A-Math. Phy. 361 1655
Google Scholar
[43] Levitt M H 2008 Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons) pp611–613
[44] Duer M J 2008 Solid State NMR Spectroscopy: Principles and Applications (John Wiley & Sons) p37
[45] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press) p105
[46] 王义遒 1964 物理学报 20 41
Google Scholar
Wang Y Q 1964 Acta Phys. Sin. 20 41
Google Scholar
[47] 蒲鹏, 徐灿, 解淑玉 2011 物理化学学报 27 2227
Google Scholar
Pu P, Xu C, Xie S Y 2011 Acta Phys. -Chim. Sin. 27 2227
Google Scholar
[48] Resing H 1969 Molecular Crystals and Liquid Crystals 9 101
Google Scholar
[49] Krojanski H G, Suter D 2004 Phys. Rev. Lett. 93 090501
Google Scholar
[50] Krojanski H G, Suter D 2006 Phys. Rev. A 74 062319
Google Scholar
[51] Lovrić M, Krojanski H G, Suter D 2007 Phys. Rev. A 75 042305
Google Scholar
[52] Álvarez G A, Suter D 2011 Phys. Rev. Lett. 107 230501
Google Scholar
[53] Alvarez G A, Suter D 2011 Phys. Rev. A 84 012320
Google Scholar
[54] Álvarez G A, Kaiser R, Suter D 2013 Ann. Phys. 525 833
Google Scholar
[55] Sánchez C M, Chattah A K, Pastawski H M 2022 Phys. Rev. A 105 052232
Google Scholar
[56] Zhou T, Swingle B 2023 Nat. Commun. 14 3411
Google Scholar
[57] Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C, Viola L 2009 Phys. Rev. A 80 052323
Google Scholar
[58] Rufeil-Fiori E, Sánchez C M, Oliva F Y, Pastawski H M, Levstein P R 2009 Phys. Rev. A 79 032324
Google Scholar
[59] Peng P 2022 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology
[60] Cappellaro P, Viola L, Ramanathan C 2011 Phys. Rev. A 83 032304
Google Scholar
[61] Maletinsky P, Kroner M, Imamoglu A 2009 Nat. Phys. 5 407
Google Scholar
[62] Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J, Roditi I 2015 Phys. Rev. Lett. 114 043604
Google Scholar
[63] Greilich A, Kopteva N E, Kamenskii A N, Sokolov P S, Korenev V L, Bayer M 2024 Nat. Phys. 20 631
Google Scholar
[64] Redfield A G 1965 Advances in Magnetic and Optical Resonance (Vol. 1) (Elsevier) pp1–32
[65] Kowalewski J, Maler L 2017 Nuclear Spin Relaxation in Liquids: Theory, experiments, and applications (CRC Press) pp51–74
[66] Gasbarri G, Ferialdi L 2018 Phys. Rev. A 98 042111
Google Scholar
[67] Wang P, Chen C, Peng X, Wrachtrup J, Liu R B 2019 Phys. Rev. Lett. 123 050603
Google Scholar
[68] Wu Z, Wang P, Wang T, Li Y, Liu R, Chen Y, Peng X, Liu R B 2024 Phys. Rev. Lett. 132 200802
Google Scholar
[69] Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H, Onoda S, Isoya J, Liu R B, Wrachtrup J 2022 Nat. Commun. 13 5318
Google Scholar
[70] Cheung B C H, Liu R B 2024 Adv. Quantum Technol. 1800057
Google Scholar
[71] Modi K, Cable H, Williamson M, Vedral V 2011 Phys. Rev. X 1 021022
Google Scholar
[72] McArthur D, Hahn E, Walstedt R 1969 Phys. Rev. 188 609
Google Scholar
[73] Demco D, Tegenfeldt J, Waugh J 1975 Phys. Rev. B 11 4133
Google Scholar
[74] Mehring M 2012 Principles of High Resolution NMR in Solids (Springer Science & Business Media) pp129–182
[75] Kolodziejski W, Klinowski J 2002 Chem. Rev. 102 613
Google Scholar
[76] Slichter C, Holton W C 1961 Phys. Rev. 122 1701
Google Scholar
[77] Anderson A, Hartmann S 1962 Phys. Rev. 128 2023
Google Scholar
[78] Hediger S, Meier B, Kurur N D, Bodenhausen G, Ernst R 1994 Chem. Phys. Lett. 223 283
Google Scholar
[79] Hediger S, Meier B, Ernst R 1995 Chem. Phys. Lett. 240 449
Google Scholar
[80] Levitt M, Suter D, Ernst R 1986 J. Chem. Phys. 84 4243
Google Scholar
[81] Kim H, Cross T A, Fu R 2004 J. Magn. Reson. 168 147
Google Scholar
[82] Barbara T M, Williams E H 1992 J. Magn. Reson. 99 439
Google Scholar
[83] Hediger S, Meier B, Ernst R 1993 Chem. Phys. Lett. 213 627
Google Scholar
[84] Fu R, Pelupessy P, Bodenhausen G 1997 Chem. Phys. Lett. 264 63
Google Scholar
[85] Fu R, Hu J, Cross T A 2004 Journal of Magnetic Resonance 168 8
Google Scholar
[86] Overhauser A W 1953 Phys. Rev. 92 411
Google Scholar
[87] Abraham M, McCausland M, Robinson F 1959 Phys. Rev. Lett. 2 449
Google Scholar
[88] Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Van Der Wel P C, Herzfeld J, Temkin R J, Griffin R G 2008 J. Chem. Phys. 128 052211
Google Scholar
[89] Eickhoff M, Suter D 2004 J. Magn. Reson. 166 69
Google Scholar
[90] Lai C, Maletinsky P, Badolato A, Imamoglu A 2006 Phys. Rev. Lett. 96 167403
Google Scholar
[91] Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M 2014 P. Natl. A. Sci. 111 7527
Google Scholar
[92] Gao X Y, Vaidya S, Li K J, Ju P, Jiang B Y, Xu Z J, Allcca A E L, Shen K H, Taniguchi T, Watanabe K, Bhave S A, Chen Y P, Ping Y, Li T C 2022 Nat. Mater. 21 1024
Google Scholar
[93] Millington-Hotze P, Dyte H E, Manna S, Covre da Silva S F, Rastelli A, Chekhovich E A 2024 Nat. Commun. 15 985
Google Scholar
[94] Hautzinger M P, Pan X, Hayden S C, Ye J Y, Jiang Q, Wilson M J, Phillips A J, Dong Y, Raulerson E K, Leahy I A, Jiang C S, Blackburn J L, Luther J M, Lu Y, Jungjohann K, Vardeny Z V, Berry J J, Alberi K, Beard M C 2024 Nature 631 307
Google Scholar
[95] Cui J, Li J, Liu X, Peng X, Fu R 2018 J. Magn. Reson. 294 83
Google Scholar
[96] Haeberlen U, Waugh J S 1968 Phys. Rev. 175 453
Google Scholar
[97] Mori T, Kuwahara T, Saito K 2016 Phys. Rev. Lett. 116 120401
Google Scholar
[98] Abanin D A, De Roeck W, Ho W W, Huveneers F 2017 Phys. Rev. B 95 014112
Google Scholar
[99] Blanes S, Casas F, Oteo J A, Ros J 2009 Phys. Rep. 470 151
Google Scholar
[100] Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139
Google Scholar
[101] Suter D, Liu S, Baum J, Pines A 1987 Chem. Phys. 114 103
Google Scholar
[102] Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417
Google Scholar
[103] Alvarez G A, Ajoy A, Peng X, Suter D 2010 Phys. Rev. A 82 042306
Google Scholar
[104] Yang W, Wang Z Y, Liu R B 2011 Front. Phys. China 6 2
Google Scholar
[105] Peng X, Suter D, Lidar D A 2011 J. Phys. B: At. Mol. Opt. 44 154003
Google Scholar
[106] Hahn E L 1950 Phys. Rev. 80 580
Google Scholar
[107] Carr H Y, Purcell E M 1954 Phys. Rev. 94 630
Google Scholar
[108] Meiboom S, Gill D 1958 Rev. Sci. Instrum. 29 688
Google Scholar
[109] Khodjasteh K, Lidar D A 2005 Phys. Rev. Lett. 95 180501
Google Scholar
[110] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
Google Scholar
[111] Rhim W K, Pines A, Waugh J S 1970 Phys. Rev. Lett. 25 218
Google Scholar
[112] Waugh J S, Huber L M, Haeberlen U 1968 Phys. Rev. Lett. 20 180
Google Scholar
[113] Cory D, Miller J, Garroway A 1990 J. Magn. Reson. 90 205
Google Scholar
[114] Peng P, Huang X, Yin C, Joseph L, Ramanathan C, Cappellaro P 2022 Phys. Rev. Appl. 18 024033
Google Scholar
[115] Mehring M, Waugh J S 1972 Phys. Rev. B 5 3459
Google Scholar
[116] Li J, Fan R H, Wang H Y, Ye B T, Zeng B, Zhai H, Peng X H, Du J F 2017 Phys. Rev. X 7 031011
Google Scholar
[117] Schleier-Smith M 2017 Nat. Phys. 13 724
Google Scholar
[118] Landsman K A, Figgatt C, Schuster T, Linke N M, Yoshida B, Yao N Y, Monroe C 2019 Nature 567 61
Google Scholar
[119] 潘健, 余琦, 彭新华 2017 物理学报 66 167601
Google Scholar
Pan J, Yu Q, Peng X H 2017 Acta Phys. Sin. 66 167601
Google Scholar
[120] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301
Google Scholar
Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301
Google Scholar
[121] 薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉 2002 物理学报 51 763
Google Scholar
Xue F, Du J F, Fan Y M, Shi M J, Zhou X Y, Han R D, Wu J H 2002 Acta Phys. Sin. 51 763
Google Scholar
[122] Suter D, Pearson J 1988 Chem. Phys. Lett. 144 328
Google Scholar
[123] van Beek J D, Carravetta M, Antonioli G C, Levitt M H 2005 Chem. Phys. Lett. 122 064314
Google Scholar
[124] Aue W P, Bartholdi E, Ernst R R 1976 J. Chem. Phys. 64 2229
Google Scholar
[125] Wokaun A, Ernst R R 1977 Chem. Phys. Lett. 52 407
Google Scholar
[126] Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D 1978 Faraday Symposia of the Chemical Society (Vol. 13) (Royal Society of Chemistry) pp49–55
[127] Bodenhausen G 1980 P. Nucl. Magn. Reson. Sp. 14 137
Google Scholar
[128] Yen Y S, Pines A 1983 J. Chem. Phys. 78 3579
Google Scholar
[129] Baum J, Munowitz M, Garroway A N, Pines A 1985 J. Chem. Phys 83 2015
Google Scholar
[130] Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001
Google Scholar
[131] Turner C J, Michailidis A A, Abanin D A, Serbyn M, Papić Z 2018 Nat. Phys. 14 745
Google Scholar
计量
- 文章访问数: 317
- PDF下载量: 14
- 被引次数: 0