搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力卷积神经网络的高质量全息图 快速生成算法

孙康生 韩超 秦海峰 顾涛 李薇 于程

引用本文:
Citation:

基于注意力卷积神经网络的高质量全息图 快速生成算法

孙康生, 韩超, 秦海峰, 顾涛, 李薇, 于程
cstr: 32037.14.aps.74.20241713

Fast generation algorithm of high-quality holograms based on attention convolutional neural network

SUN Kangsheng, HAN Chao, QIN Haifeng, GU Tao, LI Wei, YU Cheng
cstr: 32037.14.aps.74.20241713
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对目前深度学习算法难以实现快速高质量全息图的生成, 提出了一种注意力卷积神经网络算法(RTC-Holo), 在快速生成全息图的同时, 提高了全息图的生成质量. 整个网络由实值和复值卷积神经网络组成, 实值网络进行相位预测, 复值网络对空间光调制器(spatial light modulator, SLM)面的复振幅进行预测, 预测后得到的复振幅的相位用于全息编码和数值重建. 在相位预测模块的下采样阶段引入注意力机制, 增强相位预测模块下采样阶段的特征提取能力, 进而提升整个网络生成纯相位全息图的质量. 将精准的角谱衍射模型(angular spectrum method, ASM)嵌入到整个网络中, 以无监督的学习方式进行网络训练. 本文提出的算法能够在0.015 s内生成平均峰值信噪比(peak signal-to-noise ratio, PSNR)高达32.12 dB的2K (即分辨率为1920×1072)全息图. 数值仿真和光学实验验证了该方法的可行性和有效性.
    In recent years, with the significant improvement of computer performance, deep learning technology has shown an explosive development trend and has been widely used in various fields. In this context, the computer-generated hologram (CGH) generation algorithm based on deep learning provides a new method for displaying the real-time high-quality holograms. The convolutional neural network is a most typical network structure in deep learning algorithms, which can automatically extract key local features from an image and construct more complex global features through operations such as convolution, pooling and full connectivity. Convolutional neural networks have been widely used in the field of holographic displays due to their powerful feature extraction and generalization abilities. Compared with the traditional iterative algorithm, the CGH algorithm based on deep learning has a significantly improved computing speed, but its image quality still needs further improving. In this paper, an attention convolutional neural network based on the angular spectrum diffraction model is proposed to improve the quality as well as the speed of generating holograms. The whole network consists of real-valued and complex-valued convolutional neural networks: the real-valued network is used for phase prediction, while the complex-valued network is used to predict the complex amplitude of the SLM surface, and the phase of the complex amplitude obtained after prediction is used for holographic coding and numerical reconstruction. An attention mechanism is embedded in the down sampling stage of the phase prediction network to improve the feature extraction capability of the whole algorithm, thus improving the quality of the generated phase-only holograms. An accurate diffraction model of the angular spectrum method is embedded in the whole network to avoid labeling the large-scale datasets, and unsupervised learning is used to train the network. The proposed algorithm can generate high-quality 2K (resolution ratio of 11920×1072) holograms within 0.015 s. The average peak signal-to-noise ratio of the reconstruction images reaches up to 32.12 dB and the average structural similarity index measure of the generated holograms can achieve a value as high as 0.934. Numerical simulations and optical experiments verify the feasibility and effectiveness of the proposed attentional convolutional neural network algorithm based on the diffraction model of angular spectrum method, which provides a powerful help for applying the deep learning theory and algorithm to the field of real-time holographic display.
      通信作者: 韩超, hanchaozh@126.com
    • 基金项目: 国家自然科学基金区域创新发展联合基金(批准号: U22A2079)资助的课题.
      Corresponding author: HAN Chao, hanchaozh@126.com
    • Funds: Project supported by the Regional Innovation and Development Joint Funds of the National Natural Science Foundation of China (Grant No. U22A2079).
    [1]

    Huang Q, Hou Y H, Lin F C, Li Z S, He M Y, Wang D, Wang Q H 2024 Opt. Lasers Eng. 176 108104Google Scholar

    [2]

    Yao Y W, Zhang Y P, Fu Q Y, Duan J L, Zhang B, Cao L C, Poon T C 2024 Opt. Lett. 49 1481Google Scholar

    [3]

    Chen C Y, Cheng C W, Chou T A, Chuang C H 2024 Opt. Commun. 550 130024Google Scholar

    [4]

    Huang X M, Zhou Y L, Liang H W, Zhou J Y 2024 Opt. Lasers Eng. 176 108115Google Scholar

    [5]

    Shigematsu O, Naruse M, Horisaki R 2024 Opt. Lett. 49 1876Google Scholar

    [6]

    Gu T, Han C, Qin H F, Sun K S 2024 Opt. Express 32 44358Google Scholar

    [7]

    Wang D, Li Z S, Zheng Y, Zhao Y R, Liu C, Xu J B, Zheng Y W, Huang Q, Chang C L, Zhang D W, Zhuang S L, Wang Q H 2024 Light: Sci. Appl. 13 62Google Scholar

    [8]

    Wang Y Q, Zhang Z L, Zhao S Y, He W, Li X T, Wang X, Jie Y C, Zhao C M 2024 Opt. Laser Technol. 171 110372Google Scholar

    [9]

    Yao Y W, Zhang Y P, Poon T C 2024 Opt. Lasers Eng. 175 108027Google Scholar

    [10]

    Madali N, Gilles A, Gioia P, MORIN L 2024 Opt. Express 32 2473Google Scholar

    [11]

    Tsai C M, Lu C N, Yu Y H, Han P, Fang Y C 2024 Opt. Lasers Eng. 174 107982.Google Scholar

    [12]

    Zhao Y, Cao L C, Zhang H, Kong D Z, Jin G F 2015 Opt. Express 23 25440Google Scholar

    [13]

    Gerhberg R W, Saxton W O 1972 Optik 35 237

    [14]

    Liu K X, He Z H, Cao L C 2021 Chin. Opt. Lett. 19 050501Google Scholar

    [15]

    Sui X M, He Z H, Jin G F, Cao L C 2022 Opt. Express 30 30552Google Scholar

    [16]

    Kiriy S A, Rymov D A, Svistunov A S, Shifrina A V, Starikov R S, Cheremkhin P A 2024 Laser Phys. Lett. 21 045201Google Scholar

    [17]

    Li X Y, Han C, Zhang C 2024 Opt. Commun. 557 130353Google Scholar

    [18]

    Qin H F, Han C, Shi X, Gu T, Sun K S 2024 Opt. Express 32 44437Google Scholar

    [19]

    Yan X P, Liu X L, Li J Q, Hu H R, Lin M, Wang X 2024 Opt. Laser Technol. 174 110667Google Scholar

    [20]

    Yu G W, Wang J, Yang H, Guo Z C, Wu Y 2023 Opt. Lett. 48 5351Google Scholar

    [21]

    Liu Q W, Chen J, Qiu B S, Wang Y T, Liu J 2023 Opt. Express 31 35908Google Scholar

    [22]

    Horisaki R, Takagi R, Tanida J 2018 Appl. Opt. 57 3859Google Scholar

    [23]

    Lee J, Jeong J, Cho J, Yoo D, Lee B, Lee B 2020 Opt. Express 28 27137Google Scholar

    [24]

    Chang C L, Wang D, Zhu D C, Li J M, Xia J, Zhang X L 2022 Opt. Lett. 47 1482Google Scholar

    [25]

    Wu J C, Liu K X, Sui X M, Cao L C 2021 Opt. Let. 46 2908Google Scholar

    [26]

    Shui X H, Zheng H D, Xia X X, Yang F R, Wang W S, Yu Y J 2022 Opt. Express 30 44814Google Scholar

    [27]

    Peng Y F, Choi S, Padmanaban N, Wetzstein G 2020 ACM Trans. Graphics 39 1

    [28]

    Zhong C L, Sang X Z, Yan B B, Li H, Chen D, Qin X J, Chen S, Ye X Q 2023 IEEE Trans. Visual Comput. Graphics 30 1

  • 图 1  RTC-Holo算法原理示意图

    Fig. 1.  Schematic diagram of the principle of RTC-Holo algorithm.

    图 2  PP-CNN网络结构 (a) PP-CNN; (b) PP-CNN网络结构细节; (c) CBAM模块结构

    Fig. 2.  PP-CNN network structure: (a) PP-CNN; (b) structure details of PP-CNN; (c) structure of CBAM.

    图 3  HE-CCNN网络结构

    Fig. 3.  HE-CCNN network structure.

    图 4  算法数值仿真对比 (a)算法30轮训练的损失函数对比折线图; (b)算法参数量对比柱状图; (c)算法SSIM-Time对比散点图; (d)算法PSNR对比柱状图

    Fig. 4.  Algorithm numerical simulation comparison: (a) Line graph of loss function comparison for 30 training rounds of the algorithm ; (b) histogram of algorithm parameter count comparison; (c) scatter plot of algorithm SSIM-Time comparison; (d) histogram of algorithm PSNR comparison.

    图 5  仿真重建图对比

    Fig. 5.  Comparison of simulated reconstruction images.

    图 6  数值仿真对比 (a) 验证数据集30轮训练算法损失函数对比折线图; (b)算法参数对比柱状图

    Fig. 6.  Numerical simulation comparison: (a) Line graph of algorithm loss function comparison for 30 rounds of training on the validation dataset; (b) histogram of algorithm parameter comparison.

    图 7  测试集仿真重建图对比

    Fig. 7.  Comparison of test set simulated reconstruction images.

    图 8  全息显示光学实验系统

    Fig. 8.  Holographic display optical experiment system.

    图 9  光学重建图及细节放大图对比

    Fig. 9.  Comparison of optical reconstruction and detailed magnification.

    表 1  网络结构数值仿真对比

    Table 1.  Comparison of numerical simulation of network structures.

    网络结构 R-R C-C R-C CBAM+R-C
    PSNR/dB 27.89 31.23 31.59 32.12
    SSIM 0.891 0.917 0.925 0.934
    下载: 导出CSV
  • [1]

    Huang Q, Hou Y H, Lin F C, Li Z S, He M Y, Wang D, Wang Q H 2024 Opt. Lasers Eng. 176 108104Google Scholar

    [2]

    Yao Y W, Zhang Y P, Fu Q Y, Duan J L, Zhang B, Cao L C, Poon T C 2024 Opt. Lett. 49 1481Google Scholar

    [3]

    Chen C Y, Cheng C W, Chou T A, Chuang C H 2024 Opt. Commun. 550 130024Google Scholar

    [4]

    Huang X M, Zhou Y L, Liang H W, Zhou J Y 2024 Opt. Lasers Eng. 176 108115Google Scholar

    [5]

    Shigematsu O, Naruse M, Horisaki R 2024 Opt. Lett. 49 1876Google Scholar

    [6]

    Gu T, Han C, Qin H F, Sun K S 2024 Opt. Express 32 44358Google Scholar

    [7]

    Wang D, Li Z S, Zheng Y, Zhao Y R, Liu C, Xu J B, Zheng Y W, Huang Q, Chang C L, Zhang D W, Zhuang S L, Wang Q H 2024 Light: Sci. Appl. 13 62Google Scholar

    [8]

    Wang Y Q, Zhang Z L, Zhao S Y, He W, Li X T, Wang X, Jie Y C, Zhao C M 2024 Opt. Laser Technol. 171 110372Google Scholar

    [9]

    Yao Y W, Zhang Y P, Poon T C 2024 Opt. Lasers Eng. 175 108027Google Scholar

    [10]

    Madali N, Gilles A, Gioia P, MORIN L 2024 Opt. Express 32 2473Google Scholar

    [11]

    Tsai C M, Lu C N, Yu Y H, Han P, Fang Y C 2024 Opt. Lasers Eng. 174 107982.Google Scholar

    [12]

    Zhao Y, Cao L C, Zhang H, Kong D Z, Jin G F 2015 Opt. Express 23 25440Google Scholar

    [13]

    Gerhberg R W, Saxton W O 1972 Optik 35 237

    [14]

    Liu K X, He Z H, Cao L C 2021 Chin. Opt. Lett. 19 050501Google Scholar

    [15]

    Sui X M, He Z H, Jin G F, Cao L C 2022 Opt. Express 30 30552Google Scholar

    [16]

    Kiriy S A, Rymov D A, Svistunov A S, Shifrina A V, Starikov R S, Cheremkhin P A 2024 Laser Phys. Lett. 21 045201Google Scholar

    [17]

    Li X Y, Han C, Zhang C 2024 Opt. Commun. 557 130353Google Scholar

    [18]

    Qin H F, Han C, Shi X, Gu T, Sun K S 2024 Opt. Express 32 44437Google Scholar

    [19]

    Yan X P, Liu X L, Li J Q, Hu H R, Lin M, Wang X 2024 Opt. Laser Technol. 174 110667Google Scholar

    [20]

    Yu G W, Wang J, Yang H, Guo Z C, Wu Y 2023 Opt. Lett. 48 5351Google Scholar

    [21]

    Liu Q W, Chen J, Qiu B S, Wang Y T, Liu J 2023 Opt. Express 31 35908Google Scholar

    [22]

    Horisaki R, Takagi R, Tanida J 2018 Appl. Opt. 57 3859Google Scholar

    [23]

    Lee J, Jeong J, Cho J, Yoo D, Lee B, Lee B 2020 Opt. Express 28 27137Google Scholar

    [24]

    Chang C L, Wang D, Zhu D C, Li J M, Xia J, Zhang X L 2022 Opt. Lett. 47 1482Google Scholar

    [25]

    Wu J C, Liu K X, Sui X M, Cao L C 2021 Opt. Let. 46 2908Google Scholar

    [26]

    Shui X H, Zheng H D, Xia X X, Yang F R, Wang W S, Yu Y J 2022 Opt. Express 30 44814Google Scholar

    [27]

    Peng Y F, Choi S, Padmanaban N, Wetzstein G 2020 ACM Trans. Graphics 39 1

    [28]

    Zhong C L, Sang X Z, Yan B B, Li H, Chen D, Qin X J, Chen S, Ye X Q 2023 IEEE Trans. Visual Comput. Graphics 30 1

  • [1] 张帆, 张恒, 李卓越, 文俊, 胡海豹. 基于深度学习方法的圆柱绕流实验缺失数据重构. 物理学报, 2025, 74(7): 074701. doi: 10.7498/aps.74.20241689
    [2] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [3] 张赞, 黄北举, 陈弘达. 基于可重构硅光滤波器的计算重建片上光谱仪. 物理学报, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [4] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [5] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [6] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [7] 高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才. 面向纯相位型全息显示的自适应混合约束迭代算法. 物理学报, 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [8] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [9] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [10] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [11] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [12] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [13] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [14] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [15] 彭玮婷, 刘娟, 李昕, 薛高磊, 韩剑, 胡滨, 王涌天. 新颖材料器件为全息显示带来的新机遇. 物理学报, 2018, 67(2): 024213. doi: 10.7498/aps.67.20172026
    [16] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [17] 周文静, 胡文涛, 瞿惠, 朱亮, 于瀛洁. 单幅层析全息图的记录及数据重建. 物理学报, 2012, 61(16): 164212. doi: 10.7498/aps.61.164212
    [18] 王寯越, 朱佩平, 郑 欣, 袁清习, 田玉莲, 黄万霞, 吴自玉. 基于离散Fourier变换的内源全息图重构计算方法. 物理学报, 2005, 54(3): 1172-1177. doi: 10.7498/aps.54.1172
    [19] 蔡履中, 张幼文. 彩虹全息图成象的傅里叶分析. 物理学报, 1982, 31(8): 1020-1029. doi: 10.7498/aps.31.1020
    [20] 张幼文, 蔡履中, 朱伟光. 彩虹全息图和普通全息图的空间频率带宽. 物理学报, 1982, 31(4): 427-436. doi: 10.7498/aps.31.427
计量
  • 文章访问数:  457
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 修回日期:  2025-02-14
  • 上网日期:  2025-02-21

/

返回文章
返回