搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的双站雷达散射截面减缩超表面设计

朱顺凯 袁方 胡凯 皮涛涛 朱熙铖 李程

引用本文:
Citation:

基于卷积神经网络的双站雷达散射截面减缩超表面设计

朱顺凯, 袁方, 胡凯, 皮涛涛, 朱熙铖, 李程
cstr: 32037.14.aps.74.20250109

Design of bistatic radar cross section reduction metasurface based on convolutional neural networks

ZHU Shunkai, YUAN Fang, HU Kai, PI Taotao, ZHU Xicheng, LI Cheng
cstr: 32037.14.aps.74.20250109
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着雷达组网技术的发展成熟, 未来电磁隐身对抗中双站雷达散射截面(radar cross section, RCS)减缩将比单站更为重要. 人工电磁超表面为双站RCS减缩提供了全新的技术途径. 然而, 受制于大规模阵列优化耗时及双站RCS减缩全空间最值特性, 目前的双站 RCS 减缩超表面设计还存在效率不高、性能较差的问题. 鉴于此, 本文提出了一种小样本条件下的卷积神经网络(convolutional neural network, CNN)方法, 通过定向优化超表面相位分布, 实现雷达回波全空间均匀散射, 从而达到双站 RCS 减缩效果. 本方法结合了卷积特征提取、残差增强与全连接优化模块, 配合自定义损失函数, 可高效捕捉漫反射相位与 RCS 全空间最值的多维度复杂关系. 理论计算、全波仿真和样品测试结果表明, 在7.26—10.74 GHz 频段内, 利用本方法设计的超表面可实现10 dB以上的双站RCS减缩, 相比传统优化算法减缩效果提升17.2%, 且优化效率显著提高, 有望为武器装备的全空间电磁隐身提供新的技术思路.
    Radar cross section (RCS), a crucial physical quantity that characterizes the backscattering intensity of targets under radar illumination, is the primary metric for assessing stealth capabilities. With the development of radar detection technologies, RCS reduction has become a forefront research topic in radar stealth, aiming to minimize target detectability. With the maturity of radar networking technology, the bistatic radar RCS reduction is becoming increasingly important in future electromagnetic stealth countermeasures compared with the monostatic radar RCS reduction. Artificial electromagnetic metasurfaces have introduced innovative technical approaches for realizing the bistatic radar RCS reduction. However, current metasurface designs still face challenges related to inefficiency and suboptimal performance, mainly due to the time-consuming nature of large-scale array optimization and the global extremum characteristics of bistatic radar RCS reduction. To overcome these limitations, this study proposes a few-shot convolutional neural network (CNN)-based approach, which achieves uniform full-space radar echo scattering by directionally optimizing metasurface phase distributions, thereby enabling effective bistatic radar RCS reduction. This approach integrates convolutional feature extraction, residual enhancement, and fully connected optimization modules with a customized loss function to efficiently capture the complex multidimensional relationships between diffuse reflection phases and the full-space RCS extrema. Theoretical calculations, full-wave simulations, and experimental tests show that the metasurface designed with this approach can achieve over 10 dB of Bistatic Radar RCS reduction in a frequency range from 7.26 GHz to 10.74 GHz. The method also ensures uniform diffuse reflection across the full space for various incidence angles (30°, 45°, 60°). Compared with traditional optimization algorithms, this method enhances RCS reduction by 17.2% while significantly improving computational efficiency. This approach provides a promising new technical paradigm for achieving full-space electromagnetic stealth in advanced weapon systems.
      通信作者: 袁方, 13379260913@163.com ; 李程, licheng@nudt.edu.cn
    • 基金项目: 国家资助博士后研究人员计划(批准号: GZB20240991)和国家自然科学基金青年科学基金(批准号: 62401596)资助的课题.
      Corresponding author: YUAN Fang, 13379260913@163.com ; LI Cheng, licheng@nudt.edu.cn
    • Funds: Project supported by the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20240991) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62401596).
    [1]

    Rao G A, Mahulikar S P 2002 Aeronaut. J. 106 629Google Scholar

    [2]

    Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd Ed.) (Reston: AIAA) pp8–56

    [3]

    Westwick P 2019 Stealth: The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42

    [4]

    Singh H, Antony S, Jha R M 2016 Plasma-based Radar Cross Section Reduction (Singapore: Springer) pp1–46

    [5]

    Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36

    [6]

    Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd Ed.) (Reston: SciTech Publishing) pp4–22

    [7]

    Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 10 2303104Google Scholar

    [8]

    Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 47 4872Google Scholar

    [9]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [10]

    Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8 105815Google Scholar

    [11]

    Liu Y, Zhao X 2014 IEEE Antennas Wirel. Propag. Lett. 13 1473Google Scholar

    [12]

    Yu N, Genevet P, Kats Ma, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [13]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [14]

    Abdullah M, Koziel S 2022 IEEE Trans. Microwave Theory Tech. 70 264Google Scholar

    [15]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [16]

    Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636Google Scholar

    [17]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag. 67 2604Google Scholar

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [19]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [20]

    Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 70 2352Google Scholar

    [21]

    Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 21 20240246Google Scholar

    [22]

    Qi W J, Yu C, Du J L, Zhao Y J 2022 Int. J. RF Microwave Comput. Aided Eng. 32 23306Google Scholar

    [23]

    Koziel S, Abdullah M 2020 IEEE Trans. Microwave Theory Tech. 69 2028Google Scholar

    [24]

    Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10 114Google Scholar

    [25]

    杨欣雨 2023 硕士学位论文 (南京: 东南大学)

    Yang X Y 2023 M. S. Thesis (Nanjing: Southeast University

    [26]

    袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起 2022 物理学报 71 084102Google Scholar

    Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71 084102Google Scholar

    [27]

    Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 16 3188Google Scholar

    [28]

    Han X M, Xu H J, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8 162313Google Scholar

    [29]

    Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 Electron. Lett. 53 1381Google Scholar

    [30]

    Katoch S, Chauhan S S, Kumar V 2021 Multimed. Tools Appl. 80 8091Google Scholar

    [31]

    Wang D S, Tan D P, Liu L 2018 Soft Comput. 22 387Google Scholar

    [32]

    Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 78 29921Google Scholar

    [33]

    Dumoulin V, Visin F 2016 arXiv:1603.07285 [stat.ML]

    [34]

    Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv: 1505.00853 [cs.LG]

    [35]

    Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv: 1806.02375 [cs.LG]

    [36]

    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 15 1929

    [37]

    Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 503 92Google Scholar

    [38]

    Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 46 6486Google Scholar

    [39]

    Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 50 57Google Scholar

    [40]

    Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv: 2202.06373 [cs.CV]

    [41]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 68 2463Google Scholar

  • 图 1  (a)随机相位分布; (b)随机相位3D远场图; (c)随机相位2D远场图

    Fig. 1.  (a) Random phase distribution; (b) 3D far-field of random phase; (c) 2D far-field of random phase

    图 2  (a)—(d) GA, PSO, PSO-GA, PSO-SA优化后的相位分布; (e)—(h) 优化相位分布后的3D远场图; (i)—(l)优化相位分布后的2D远场图

    Fig. 2.  (a)–(d) Phase distributions optimized by GA, PSO, PSO-GA, and PSO-SA; (e)–(h) 3D far-field patterns of the optimized phase distributions; (i)–(l) 2D far-field patterns of the optimized phase distributions

    图 3  优化算法迭代过程中RCS均值的变化趋势

    Fig. 3.  Variation trend of RCS mean value in the iteration process of optimization algorithms

    图 4  CNN 模型示意图

    Fig. 4.  Diagram of CNN model.

    图 5  全连接层结构示意图

    Fig. 5.  Diagram of fully connected layer structure

    图 6  (a) Leaky ReLU激活函数图; (b) Sigmoid激活函数图

    Fig. 6.  (a) Leaky ReLU activation function graph; (b) Sigmoid activation function graph

    图 7  (a)损失函数图; (b) RCS 值迭代曲线图; (c)模型运行 100次结果图

    Fig. 7.  (a) Loss function diagram; (b) RCS value iteration curve diagram; (c) results of 100 runs with model

    图 8  (a) CNN 优化后的相位分布; (b) CNN 优化相位分布后的3D远场图; (c) CNN优化相位分布后的2D远场图

    Fig. 8.  (a) Phase distribution optimized by CNN; (b) 3D far-field patterns after optimizing phase distribution by CNN; (c) 2D far-field patterns after optimizing phase distribution by CNN

    图 9  (a) 各类算法优化效果; (b) 各类算法运行时间

    Fig. 9.  (a) Optimization effect of various algorithms; (b) running time of various algorithms

    图 10  (a) 单元图; (b) 2 × 2子阵图

    Fig. 10.  (a) Cell diagram; (b) 2 × 2 submatrix

    图 11  (a)—(d) PEC, 随机, PSO-SA 优化, CNN 优化相位分布后的3D远场图; (e)—(h) PEC, 随机, PSO-GA优化, CNN优化相位分布后的2D远场图

    Fig. 11.  (a)–(d) 3D far-field patterns after phase distribution optimization by PEC, Random, PSO-SA, and CNN, respectively; (e)–(h) 2D far-field plots after phase distribution optimization by PEC, Random, PSO-SA, and CNN respectively

    图 12  入射角分别为30°, 45°, 60°时 (a)—(c) CST 全波仿真 PEC 板的3D远场图; (d)—(f) CNN优化后的相位分布; (g)—(i) CNN优化后的相位分布在CST全波仿真的3D远场图; (j)—(l) CNN优化后的相位分布在CST全波仿真的2D远场图

    Fig. 12.  Incident angles of 30°, 45°, 60°: (a)–(c) 3D far-field patterns of CST full-wave simulation of PEC plates; (d)–(f) phase distribution optimized by CNN; (g)–(i) 3D far-field patterns of CST full-wave simulation with CNN-optimized phase distribution; (j)–(l) 2D far-field patterns of CST full-wave simulation with CNN-optimized phase distribution

    图 13  (a) CST全波仿真中RCS值随频率变化曲线; (b)双站RCS减缩值

    Fig. 13.  (a) RCS vs. frequency curve in CST full-wave simulation; (b) bistatic RCS reduction

    图 14  (a)超表面加工样品示意图; (b)暗室测试环境

    Fig. 14.  (a) Schematic illustration of the metasurface fabrication sample; (b) darkroom testing environment

    图 15  (a), (b) PEC 板全波仿真与实测1D远场结果图; (c), (d)样品全波仿真与实测1D远场结果图

    Fig. 15.  (a), (b) 1D far-field results for full-wave simulation and measurement of PEC; (c), (d) 1D far-field results for full-wave simulation and measurement of sample

    图 16  双站 RCS 减缩仿真与实测值

    Fig. 16.  Bistatic RCS reduction simulation and measured values

    表 1  损失函数不同权重参数效果对比

    Table 1.  Comparison of the effects of different weight coefficients of the loss function.

    权重参数 参数取值 RCS 值
    $ \gamma_{{\mathrm{RCS}}} $ 0.1, 0.5, 1.0, 1.5 15.5, 14.7, 14.6, 14.6 (收敛速度慢)
    $ \gamma_{{\mathrm{Phase}}} $ 0.1, 0.3, 0.7, 1.0 16.8, 16.3, 16.2, 16.0 (无法减缩RCS)
    $ \gamma_{{\mathrm{RCS}}} $ + $ \gamma_{{\mathrm{Phase}}} $ (0.1, 0.1), (0.5, 0.1), (0.5, 0.3)··· 16.3, 14.8, 15.6··· (二值化模糊)
    $ \gamma_{{\mathrm{RCS}}} $ + $ \gamma_{{\mathrm{Phase}}} $ + $ \gamma_{{\mathrm{Reg}}} $ (0.5, 0.1, 0.5), (0.5, 0.1, 1), (0.5, 0.1, 1.5)··· 14.8, 14.7, 14.6···
    下载: 导出CSV

    表 A1  实验环境配置

    Table A1.  Experimental environment configuration.

    名称 配置信息
    开发语言 Python 3.9
    框架 PyTorch 1.10.0 + CUDA 12.0
    CPU Intel Core i9
    GPU GeForce RTX 4060 Laptop GPU (8G)
    内存 8 G
    NumPy 1.21.3
    Matplotlib 3.9.2
    torchvision 0.13.0
    Pandas 1.3.3
    下载: 导出CSV
  • [1]

    Rao G A, Mahulikar S P 2002 Aeronaut. J. 106 629Google Scholar

    [2]

    Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd Ed.) (Reston: AIAA) pp8–56

    [3]

    Westwick P 2019 Stealth: The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42

    [4]

    Singh H, Antony S, Jha R M 2016 Plasma-based Radar Cross Section Reduction (Singapore: Springer) pp1–46

    [5]

    Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36

    [6]

    Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd Ed.) (Reston: SciTech Publishing) pp4–22

    [7]

    Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 10 2303104Google Scholar

    [8]

    Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 47 4872Google Scholar

    [9]

    Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402Google Scholar

    [10]

    Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8 105815Google Scholar

    [11]

    Liu Y, Zhao X 2014 IEEE Antennas Wirel. Propag. Lett. 13 1473Google Scholar

    [12]

    Yu N, Genevet P, Kats Ma, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [13]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [14]

    Abdullah M, Koziel S 2022 IEEE Trans. Microwave Theory Tech. 70 264Google Scholar

    [15]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag. 55 3630Google Scholar

    [16]

    Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636Google Scholar

    [17]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag. 67 2604Google Scholar

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [19]

    Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [20]

    Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 70 2352Google Scholar

    [21]

    Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 21 20240246Google Scholar

    [22]

    Qi W J, Yu C, Du J L, Zhao Y J 2022 Int. J. RF Microwave Comput. Aided Eng. 32 23306Google Scholar

    [23]

    Koziel S, Abdullah M 2020 IEEE Trans. Microwave Theory Tech. 69 2028Google Scholar

    [24]

    Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10 114Google Scholar

    [25]

    杨欣雨 2023 硕士学位论文 (南京: 东南大学)

    Yang X Y 2023 M. S. Thesis (Nanjing: Southeast University

    [26]

    袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起 2022 物理学报 71 084102Google Scholar

    Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71 084102Google Scholar

    [27]

    Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 16 3188Google Scholar

    [28]

    Han X M, Xu H J, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8 162313Google Scholar

    [29]

    Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 Electron. Lett. 53 1381Google Scholar

    [30]

    Katoch S, Chauhan S S, Kumar V 2021 Multimed. Tools Appl. 80 8091Google Scholar

    [31]

    Wang D S, Tan D P, Liu L 2018 Soft Comput. 22 387Google Scholar

    [32]

    Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 78 29921Google Scholar

    [33]

    Dumoulin V, Visin F 2016 arXiv:1603.07285 [stat.ML]

    [34]

    Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv: 1505.00853 [cs.LG]

    [35]

    Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv: 1806.02375 [cs.LG]

    [36]

    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 15 1929

    [37]

    Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 503 92Google Scholar

    [38]

    Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 46 6486Google Scholar

    [39]

    Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 50 57Google Scholar

    [40]

    Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv: 2202.06373 [cs.CV]

    [41]

    Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 68 2463Google Scholar

  • [1] 王翔, 周义深, 张轩阁, 陈希浩. 融合注意力机制的卷积网络单像素成像. 物理学报, 2025, 74(8): 084202. doi: 10.7498/aps.74.20250010
    [2] 姜廷帅, 阮逸润, 李海, 白亮, 袁逸飞, 于天元. 基于信息熵赋权的多通道卷积神经网络节点重要性评估方法. 物理学报, 2025, 74(12): . doi: 10.7498/aps.74.20250329
    [3] 吴银花, 种喆, 朱鹏飞, 陈莎莎, 周顺. 基于卷积神经网络的非对称共光路相干色散光谱仪背景白光干扰去除. 物理学报, 2025, 74(10): 104201. doi: 10.7498/aps.74.20250090
    [4] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法. 物理学报, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [8] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 黄伟建, 李永涛, 黄远. 基于混合神经网络和注意力机制的混沌时间序列预测. 物理学报, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [11] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [12] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [13] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [16] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [17] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  604
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-23
  • 修回日期:  2025-02-21
  • 上网日期:  2025-03-13

/

返回文章
返回