搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准晶势调制的一维p波超导体中的拓扑量子相变

古燕 王智鹏 陆展鹏

引用本文:
Citation:

准晶势调制的一维p波超导体中的拓扑量子相变

古燕, 王智鹏, 陆展鹏
cstr: 32037.14.aps.74.20250137

Topological quantum phase transitions in quasicrystalline potential modulated one-dimensional p-wave superconductors

GU Yan, WANG Zhipeng, LU Zhanpeng
cstr: 32037.14.aps.74.20250137
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 研究了一维Fibonacci准晶势调制下的p波超导体下的拓扑相变和局域化性质. 在Fibonacci准晶势调制下, 通过计算$Z_2$拓扑不变量确定了系统的拓扑相图. 分析相图指出在Fibonacci准晶势调制下, 系统可以由拓扑平庸超导相进入拓扑安德森超导相. 进一步分析发现, 在某些参数下, 系统会发生多次拓扑安德森超导相转变并伴随零能态的出现. 此外, 还研究了系统的局域化性质, 通过分析分形维度、平均逆参与率序参量, 发现Fibonacci准晶势诱导的拓扑安德森超导相, 其体态的波函数表现出多重分形行为, 这与随机无序诱导出来的传统拓扑安德森超导相完全不同. 该研究结果为一维p波超导体中拓扑相变和局域化转变的研究提供了一些新的理解和参考.
    The topological phase transitions and localization properties in a 1D p-wave superconductor under Fibonacci quasi-periodic potential modulation are investigated in this work. By calculating the Z2 topological invariant, the topological phase diagram of the system is determined numerically. It is found that the system can transition from a topologically trivial phase to a topological Anderson superconductor phase through the Fibonacci quasi-periodic modulation. Moreover, under certain parameters, the system undergoes multiple topological Anderson superconductor phase transitions, accompanied by the emergence of zero-energy modes. However, in the case of strong disorder, the topological Anderson superconductor phase is destroyed, indicating that the topological Anderson superconductor phase can be induced only within a finite range of parameters. Furthermore, by calculating and analyzing the fractal dimension and the mean inverse participation ratio (MIPR) order parameter, the localization properties of the system are analyzed. The results show that regardless of how the disorder intensity increases, the fractal dimension values of most eigenstates always remain within a range of 0–1. Subsequently, the variations in the fractal dimensions of all eigenstates for different system sizes are studied. The results show that the fractal dimension values of most eigenstates are away from 0 and 1. These results indicate that the wavefunction in the bulk of the topological Anderson superconductor phase induced by Fibonacci quasi-periodic potential is a critical state wavefunction, with the system overall being in a critical phase. The stability of the critical phase is confirmed by scale behavior of MIPR as shown in Fig. (a). It differs from the traditional topological Anderson superconductor phase induced by random disorder or AA-type quasi-periodic disorder. The results provide new insights into and references for studying topological phase transitions and localization transitions in 1D p-wave superconductors.
      通信作者: 陆展鹏, 201712605002@email.sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12205176)、山西省基础研究计划自由探索类青年项目(批准号: 202403021212025)资助的课题.
      Corresponding author: LU Zhanpeng, 201712605002@email.sxu.edu.cn
    • Funds: Project is supported by the National Natural Science Foundation of China (Grant No. 12205176) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021212025).
    [1]

    Nakajima S, Takei N, Sakuma K, Kuno Y, Marra P, Takahashi Y 2021 Nat. Phys. 17 844Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Hasan M X, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [6]

    Xiao T, Xie D, Dong Z, Chen T, Yi W, Yan B 2021 Sci. Bull. 66 2175Google Scholar

    [7]

    Szameit A, Rechtsman M C 2024 Nat. Phys. 20 905Google Scholar

    [8]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [9]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [10]

    Zhang Y Y, Chu R L, Zhang F C, Shen S Q 2012 Phys. Rev. B 85 035107Google Scholar

    [11]

    Jiang H, Wang L, Sun Q F, Xie X C 2009 Phys. Rev. B 80 165316Google Scholar

    [12]

    Li X Q, Zhang H H, Xu H, San H D, Wang X N, Qi S F, Qiao Z H 2024 Phys. Rev. B 109 155427Google Scholar

    [13]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [14]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [15]

    Velury S, Bradlyn B, Hughes T L 2021 Phys. Rev. B 103 024205Google Scholar

    [16]

    徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力 2023 物理学报 72 177401Google Scholar

    Xu L, Li P L, Lü Z Z, Shen J, Qu F M, Liu G T, Lü L 2023 Acta Phys. Sin. 72 177401Google Scholar

    [17]

    关欣, 陈刚 2023 物理学报 72 140301Google Scholar

    Guan X, Chen G 2023 Acta Phys. Sin. 72 140301Google Scholar

    [18]

    Gu Y, Lu Z P 2024 Chin. Phys. B 33 090202Google Scholar

    [19]

    Li G Q, Wang B H, Tang J Y, Peng P, Dong L W 2023 Chin. Phys. B 32 077102Google Scholar

    [20]

    Huang A H, Ke S S, Guan J H, Li J, Lou W K 2024 Chin. Phys. Lett. 41 097302Google Scholar

    [21]

    Chang Z W, Hao W C, Bustamante M, Liu X 2024 Chin. Phys. Lett. 41 037302Google Scholar

    [22]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635Google Scholar

    [23]

    Prodan E, Hughes T L, Bernevig B A 2010 Phys. Rev. Lett. 105 115501Google Scholar

    [24]

    Cai X M, Lang L J, Chen S, Wang Y 2013 Phys. Rev. Lett. 110 176403Google Scholar

    [25]

    Liu J, Potter A C, Law K T, Lee P A 2012 Phys. Rev. Lett. 109 267002Google Scholar

    [26]

    Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806Google Scholar

    [27]

    Groth C W, Wimmer M, Akhmerov A R, Tworzydlo J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805Google Scholar

    [28]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [29]

    Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461Google Scholar

    [30]

    Borchmann J, Farrell A, Pereg-Barnea T 2016 Phys. Rev. B 93 125133Google Scholar

    [31]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [32]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [33]

    Zhu S L, Shao L B, Wang Z D, Duan L M 2011 Phys. Rev. Lett. 106 100404Google Scholar

    [34]

    Lindner N H, Berg E, Refael G, Stern A 2012 Phys. Rev. X 2 041002Google Scholar

    [35]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [36]

    Lang L J, Chen S 2012 Phys. Rev. B. 86 205135Google Scholar

    [37]

    Hua C B, Chen R, Xu D H, Zhou B 2019 Phys. Rev. B 100 205302Google Scholar

    [38]

    Hegde S S, Vishveshwara S 2016 Phys. Rev. B 94 115166Google Scholar

    [39]

    DeGottardi W, Thakurathi M, Vishveshwara S, Sen D 2013 Phys. Rev. B 88 165111Google Scholar

    [40]

    Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505Google Scholar

    [41]

    Jagannathan A 2021 Rev. Mod. Phys. 93 045001Google Scholar

    [42]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [43]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768Google Scholar

    [44]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [45]

    Kobiałka A, Awoga O A, Leijnse M, Domański T, Holmvall P, Black-Schaffer A M 2024 Phys. Rev. B 110 134508Google Scholar

    [46]

    Hu Y C, Kane C L 2018 Phys. Rev. Lett. 120 066801Google Scholar

    [47]

    Tong L, Cheng S J, Guo H, Gao X L 2021 Phys. Rev. B 103 104203Google Scholar

    [48]

    Zhu J X 2016 Bogoliubov-de Gennes Method and Its Applications (Cham: Springer Cham

    [49]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407Google Scholar

    [50]

    Zhang P, Nori F 2016 New J. Phys. 18 043033Google Scholar

    [51]

    Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W J 2011 Phys. Rev. Lett. 106 057001Google Scholar

    [52]

    Fulga I C, Hassler F, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 83 155429Google Scholar

    [53]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [54]

    Li X, Sarma S D 2020 Phys. Rev. B 101 064203Google Scholar

    [55]

    Wang Y, Zhang L, Niu S, Yu D, Liu X J 2020 Phys. Rev. Lett. 125 073204Google Scholar

    [56]

    Longhi S 2020 Opt. Lett. 45 4036Google Scholar

    [57]

    Lang L J, Cai X M, Chen S 2012 Phys. Rev. Lett. 108 220401Google Scholar

    [58]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [59]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [60]

    Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511Google Scholar

    [61]

    Prada E, San Jose P, Aguado R 2012 Phys. Rev. B 86 180503Google Scholar

    [62]

    Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803Google Scholar

    [63]

    Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 85 060507Google Scholar

    [64]

    Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D, Frolov S M 2019 Phys. Rev. Lett. 123 107703Google Scholar

    [65]

    Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V, Frolov S M 2021 Nat. Phys. 17 482Google Scholar

  • 图 1  (a)以拓扑不变量Q大小为背景颜色填充的V-M参数平面的拓扑相图. 颜色条代表$Z_{2}$拓扑不变量Q的大小. 绿色虚线代表拓扑相变点解析解, 由(20)式确定. (b)—(d) 当常数势强度$M=1$, $-3$和$-4$时, 能隙$\varDelta_{\mathrm{g}}$和$Z_{2}$拓扑不变量Q随无序强度V的变化. (b)插图对应的是无序强度$V=0.2$时, L能级对应的波函数分布. 这里, $\varDelta=0.4$和$L=2000$

    Fig. 1.  The $Z_{2}$ topological invariant Q as a function of the disorder strength V and constant potential M. The colorbar shows the value of the $Z_{2}$ topological invariant Q. The green dashed line represents the analytical solution of the topological phase transition point, determined by Eq. (20). Energy gap $\varDelta_{\mathrm{g}}$ and the $Z_{2}$ topological invariant Q as a function of V for (b) $M=1$, (c) $M=-3$ and (d) $M=-4$. The wave function distributions corresponding to the L energy levels at a disorder strength of $V=0.2$ in the inset of panel (b). Other parameters: $\varDelta=0.4$ and $L=2000$.

    图 2  当系统尺寸$L=500$, M分别为(a)$M=1$和(b)$M=-3$时, 分形维度(${\varGamma}_n$)随着本征能量E和无序强度V的变化. 图中的颜色条代表分形维度(${\varGamma}_n$)的大小. (c)当$V=2$且$M=1$时, 不同系统尺寸下, 系统分形维度(${\varGamma}_n$)的值. (d)当$V=2$且$M=-3$时, 不同系统尺寸下, 系统分形维度(${\varGamma}_n$)的值. 其他参数取值为$\varDelta=0.4$

    Fig. 2.  The fractal dimension ${\varGamma}_n$ of different eigenstates as a function of the corresponding E and the modulation strength V with $L=500$ for (a)$M=1$ and (b)$M=-3$. (c) The fractal dimensions ${\varGamma}_n$ for different system sizes for $V=2$ and $M=1$. (d) The fractal dimensions ${\varGamma}_n$ for different system sizes for $V=2$ and $M=-3$. Other parameters: $\varDelta=0.4$.

    图 3  M分别为(a)$M=1$和(b)$M=-3$时, MNPR在无序强度为$V=1,\;2,\;3 $ 情况下的标度行为. 其他参数$\varDelta=0.4$

    Fig. 3.  The scaling behavior of MIPR in (a) $M=1$ and (b) $M=-3$ with $V=1,\; 2,\;3$. Other parameters: $\varDelta=0.4$.

  • [1]

    Nakajima S, Takei N, Sakuma K, Kuno Y, Marra P, Takahashi Y 2021 Nat. Phys. 17 844Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Hasan M X, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [6]

    Xiao T, Xie D, Dong Z, Chen T, Yi W, Yan B 2021 Sci. Bull. 66 2175Google Scholar

    [7]

    Szameit A, Rechtsman M C 2024 Nat. Phys. 20 905Google Scholar

    [8]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [9]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [10]

    Zhang Y Y, Chu R L, Zhang F C, Shen S Q 2012 Phys. Rev. B 85 035107Google Scholar

    [11]

    Jiang H, Wang L, Sun Q F, Xie X C 2009 Phys. Rev. B 80 165316Google Scholar

    [12]

    Li X Q, Zhang H H, Xu H, San H D, Wang X N, Qi S F, Qiao Z H 2024 Phys. Rev. B 109 155427Google Scholar

    [13]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [14]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [15]

    Velury S, Bradlyn B, Hughes T L 2021 Phys. Rev. B 103 024205Google Scholar

    [16]

    徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力 2023 物理学报 72 177401Google Scholar

    Xu L, Li P L, Lü Z Z, Shen J, Qu F M, Liu G T, Lü L 2023 Acta Phys. Sin. 72 177401Google Scholar

    [17]

    关欣, 陈刚 2023 物理学报 72 140301Google Scholar

    Guan X, Chen G 2023 Acta Phys. Sin. 72 140301Google Scholar

    [18]

    Gu Y, Lu Z P 2024 Chin. Phys. B 33 090202Google Scholar

    [19]

    Li G Q, Wang B H, Tang J Y, Peng P, Dong L W 2023 Chin. Phys. B 32 077102Google Scholar

    [20]

    Huang A H, Ke S S, Guan J H, Li J, Lou W K 2024 Chin. Phys. Lett. 41 097302Google Scholar

    [21]

    Chang Z W, Hao W C, Bustamante M, Liu X 2024 Chin. Phys. Lett. 41 037302Google Scholar

    [22]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635Google Scholar

    [23]

    Prodan E, Hughes T L, Bernevig B A 2010 Phys. Rev. Lett. 105 115501Google Scholar

    [24]

    Cai X M, Lang L J, Chen S, Wang Y 2013 Phys. Rev. Lett. 110 176403Google Scholar

    [25]

    Liu J, Potter A C, Law K T, Lee P A 2012 Phys. Rev. Lett. 109 267002Google Scholar

    [26]

    Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806Google Scholar

    [27]

    Groth C W, Wimmer M, Akhmerov A R, Tworzydlo J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805Google Scholar

    [28]

    Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929Google Scholar

    [29]

    Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461Google Scholar

    [30]

    Borchmann J, Farrell A, Pereg-Barnea T 2016 Phys. Rev. B 93 125133Google Scholar

    [31]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [32]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [33]

    Zhu S L, Shao L B, Wang Z D, Duan L M 2011 Phys. Rev. Lett. 106 100404Google Scholar

    [34]

    Lindner N H, Berg E, Refael G, Stern A 2012 Phys. Rev. X 2 041002Google Scholar

    [35]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [36]

    Lang L J, Chen S 2012 Phys. Rev. B. 86 205135Google Scholar

    [37]

    Hua C B, Chen R, Xu D H, Zhou B 2019 Phys. Rev. B 100 205302Google Scholar

    [38]

    Hegde S S, Vishveshwara S 2016 Phys. Rev. B 94 115166Google Scholar

    [39]

    DeGottardi W, Thakurathi M, Vishveshwara S, Sen D 2013 Phys. Rev. B 88 165111Google Scholar

    [40]

    Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505Google Scholar

    [41]

    Jagannathan A 2021 Rev. Mod. Phys. 93 045001Google Scholar

    [42]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [43]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768Google Scholar

    [44]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [45]

    Kobiałka A, Awoga O A, Leijnse M, Domański T, Holmvall P, Black-Schaffer A M 2024 Phys. Rev. B 110 134508Google Scholar

    [46]

    Hu Y C, Kane C L 2018 Phys. Rev. Lett. 120 066801Google Scholar

    [47]

    Tong L, Cheng S J, Guo H, Gao X L 2021 Phys. Rev. B 103 104203Google Scholar

    [48]

    Zhu J X 2016 Bogoliubov-de Gennes Method and Its Applications (Cham: Springer Cham

    [49]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407Google Scholar

    [50]

    Zhang P, Nori F 2016 New J. Phys. 18 043033Google Scholar

    [51]

    Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W J 2011 Phys. Rev. Lett. 106 057001Google Scholar

    [52]

    Fulga I C, Hassler F, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 83 155429Google Scholar

    [53]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [54]

    Li X, Sarma S D 2020 Phys. Rev. B 101 064203Google Scholar

    [55]

    Wang Y, Zhang L, Niu S, Yu D, Liu X J 2020 Phys. Rev. Lett. 125 073204Google Scholar

    [56]

    Longhi S 2020 Opt. Lett. 45 4036Google Scholar

    [57]

    Lang L J, Cai X M, Chen S 2012 Phys. Rev. Lett. 108 220401Google Scholar

    [58]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [59]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [60]

    Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511Google Scholar

    [61]

    Prada E, San Jose P, Aguado R 2012 Phys. Rev. B 86 180503Google Scholar

    [62]

    Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803Google Scholar

    [63]

    Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 85 060507Google Scholar

    [64]

    Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D, Frolov S M 2019 Phys. Rev. Lett. 123 107703Google Scholar

    [65]

    Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V, Frolov S M 2021 Nat. Phys. 17 482Google Scholar

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, 2025, 74(1): 010301. doi: 10.7498/aps.74.20240933
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变. 物理学报, 2023, 72(12): 127102. doi: 10.7498/aps.72.20230043
    [4] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [5] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [6] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [7] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [8] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [9] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [10] 武璟楠, 徐志浩, 陆展鹏, 张云波. 一维化学势调制的p波超导体中的拓扑量子相变. 物理学报, 2020, 69(7): 070302. doi: 10.7498/aps.69.20191868
    [11] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [12] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [13] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [14] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [15] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [16] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [17] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [18] 李晓薇. 量子线/绝缘层/p波超导体结的隧道谱. 物理学报, 2007, 56(10): 6033-6037. doi: 10.7498/aps.56.6033
    [19] 李晓薇, 刘淑静. 正常金属/自旋三重态p波超导体结隧道谱的奇异性. 物理学报, 2006, 55(2): 834-838. doi: 10.7498/aps.55.834
    [20] 李晓薇. 铁磁超导态/绝缘层/自旋三重态p波超导体结的直流Josephson电流. 物理学报, 2006, 55(12): 6637-6642. doi: 10.7498/aps.55.6637
计量
  • 文章访问数:  592
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-02
  • 修回日期:  2025-02-24
  • 上网日期:  2025-03-13

/

返回文章
返回