-
研究了一维Fibonacci准晶势调制下的p波超导体下的拓扑相变和局域化性质. 在Fibonacci准晶势调制下, 通过计算$Z_2$拓扑不变量确定了系统的拓扑相图. 分析相图指出在Fibonacci准晶势调制下, 系统可以由拓扑平庸超导相进入拓扑安德森超导相. 进一步分析发现, 在某些参数下, 系统会发生多次拓扑安德森超导相转变并伴随零能态的出现. 此外, 还研究了系统的局域化性质, 通过分析分形维度、平均逆参与率序参量, 发现Fibonacci准晶势诱导的拓扑安德森超导相, 其体态的波函数表现出多重分形行为, 这与随机无序诱导出来的传统拓扑安德森超导相完全不同. 该研究结果为一维p波超导体中拓扑相变和局域化转变的研究提供了一些新的理解和参考.
The topological phase transitions and localization properties in a 1D p-wave superconductor under Fibonacci quasi-periodic potential modulation are investigated in this work. By calculating the Z2 topological invariant, the topological phase diagram of the system is determined numerically. It is found that the system can transition from a topologically trivial phase to a topological Anderson superconductor phase through the Fibonacci quasi-periodic modulation. Moreover, under certain parameters, the system undergoes multiple topological Anderson superconductor phase transitions, accompanied by the emergence of zero-energy modes. However, in the case of strong disorder, the topological Anderson superconductor phase is destroyed, indicating that the topological Anderson superconductor phase can be induced only within a finite range of parameters. Furthermore, by calculating and analyzing the fractal dimension and the mean inverse participation ratio (MIPR) order parameter, the localization properties of the system are analyzed. The results show that regardless of how the disorder intensity increases, the fractal dimension values of most eigenstates always remain within a range of 0–1. Subsequently, the variations in the fractal dimensions of all eigenstates for different system sizes are studied. The results show that the fractal dimension values of most eigenstates are away from 0 and 1. These results indicate that the wavefunction in the bulk of the topological Anderson superconductor phase induced by Fibonacci quasi-periodic potential is a critical state wavefunction, with the system overall being in a critical phase. The stability of the critical phase is confirmed by scale behavior of MIPR as shown in Fig. (a). It differs from the traditional topological Anderson superconductor phase induced by random disorder or AA-type quasi-periodic disorder. The results provide new insights into and references for studying topological phase transitions and localization transitions in 1D p-wave superconductors. [1] Nakajima S, Takei N, Sakuma K, Kuno Y, Marra P, Takahashi Y 2021 Nat. Phys. 17 844
Google Scholar
[2] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405
Google Scholar
[3] Hasan M X, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[4] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
Google Scholar
[5] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
Google Scholar
[6] Xiao T, Xie D, Dong Z, Chen T, Yi W, Yan B 2021 Sci. Bull. 66 2175
Google Scholar
[7] Szameit A, Rechtsman M C 2024 Nat. Phys. 20 905
Google Scholar
[8] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766
Google Scholar
[9] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438
Google Scholar
[10] Zhang Y Y, Chu R L, Zhang F C, Shen S Q 2012 Phys. Rev. B 85 035107
Google Scholar
[11] Jiang H, Wang L, Sun Q F, Xie X C 2009 Phys. Rev. B 80 165316
Google Scholar
[12] Li X Q, Zhang H H, Xu H, San H D, Wang X N, Qi S F, Qiao Z H 2024 Phys. Rev. B 109 155427
Google Scholar
[13] Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698
Google Scholar
[14] Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801
Google Scholar
[15] Velury S, Bradlyn B, Hughes T L 2021 Phys. Rev. B 103 024205
Google Scholar
[16] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力 2023 物理学报 72 177401
Google Scholar
Xu L, Li P L, Lü Z Z, Shen J, Qu F M, Liu G T, Lü L 2023 Acta Phys. Sin. 72 177401
Google Scholar
[17] 关欣, 陈刚 2023 物理学报 72 140301
Google Scholar
Guan X, Chen G 2023 Acta Phys. Sin. 72 140301
Google Scholar
[18] Gu Y, Lu Z P 2024 Chin. Phys. B 33 090202
Google Scholar
[19] Li G Q, Wang B H, Tang J Y, Peng P, Dong L W 2023 Chin. Phys. B 32 077102
Google Scholar
[20] Huang A H, Ke S S, Guan J H, Li J, Lou W K 2024 Chin. Phys. Lett. 41 097302
Google Scholar
[21] Chang Z W, Hao W C, Bustamante M, Liu X 2024 Chin. Phys. Lett. 41 037302
Google Scholar
[22] Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635
Google Scholar
[23] Prodan E, Hughes T L, Bernevig B A 2010 Phys. Rev. Lett. 105 115501
Google Scholar
[24] Cai X M, Lang L J, Chen S, Wang Y 2013 Phys. Rev. Lett. 110 176403
Google Scholar
[25] Liu J, Potter A C, Law K T, Lee P A 2012 Phys. Rev. Lett. 109 267002
Google Scholar
[26] Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806
Google Scholar
[27] Groth C W, Wimmer M, Akhmerov A R, Tworzydlo J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805
Google Scholar
[28] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929
Google Scholar
[29] Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461
Google Scholar
[30] Borchmann J, Farrell A, Pereg-Barnea T 2016 Phys. Rev. B 93 125133
Google Scholar
[31] Kitaev A Y 2001 Phys. Usp. 44 131
Google Scholar
[32] Ivanov D A 2001 Phys. Rev. Lett. 86 268
Google Scholar
[33] Zhu S L, Shao L B, Wang Z D, Duan L M 2011 Phys. Rev. Lett. 106 100404
Google Scholar
[34] Lindner N H, Berg E, Refael G, Stern A 2012 Phys. Rev. X 2 041002
Google Scholar
[35] Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083
Google Scholar
[36] Lang L J, Chen S 2012 Phys. Rev. B. 86 205135
Google Scholar
[37] Hua C B, Chen R, Xu D H, Zhou B 2019 Phys. Rev. B 100 205302
Google Scholar
[38] Hegde S S, Vishveshwara S 2016 Phys. Rev. B 94 115166
Google Scholar
[39] DeGottardi W, Thakurathi M, Vishveshwara S, Sen D 2013 Phys. Rev. B 88 165111
Google Scholar
[40] Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505
Google Scholar
[41] Jagannathan A 2021 Rev. Mod. Phys. 93 045001
Google Scholar
[42] Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18
[43] Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768
Google Scholar
[44] Longhi S 2019 Phys. Rev. Lett. 122 237601
Google Scholar
[45] Kobiałka A, Awoga O A, Leijnse M, Domański T, Holmvall P, Black-Schaffer A M 2024 Phys. Rev. B 110 134508
Google Scholar
[46] Hu Y C, Kane C L 2018 Phys. Rev. Lett. 120 066801
Google Scholar
[47] Tong L, Cheng S J, Guo H, Gao X L 2021 Phys. Rev. B 103 104203
Google Scholar
[48] Zhu J X 2016 Bogoliubov-de Gennes Method and Its Applications (Cham: Springer Cham
[49] Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407
Google Scholar
[50] Zhang P, Nori F 2016 New J. Phys. 18 043033
Google Scholar
[51] Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W J 2011 Phys. Rev. Lett. 106 057001
Google Scholar
[52] Fulga I C, Hassler F, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 83 155429
Google Scholar
[53] Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803
Google Scholar
[54] Li X, Sarma S D 2020 Phys. Rev. B 101 064203
Google Scholar
[55] Wang Y, Zhang L, Niu S, Yu D, Liu X J 2020 Phys. Rev. Lett. 125 073204
Google Scholar
[56] Longhi S 2020 Opt. Lett. 45 4036
Google Scholar
[57] Lang L J, Cai X M, Chen S 2012 Phys. Rev. Lett. 108 220401
Google Scholar
[58] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[59] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001
Google Scholar
[60] Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511
Google Scholar
[61] Prada E, San Jose P, Aguado R 2012 Phys. Rev. B 86 180503
Google Scholar
[62] Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803
Google Scholar
[63] Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 85 060507
Google Scholar
[64] Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D, Frolov S M 2019 Phys. Rev. Lett. 123 107703
Google Scholar
[65] Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V, Frolov S M 2021 Nat. Phys. 17 482
Google Scholar
-
图 1 (a)以拓扑不变量Q大小为背景颜色填充的V-M参数平面的拓扑相图. 颜色条代表$Z_{2}$拓扑不变量Q的大小. 绿色虚线代表拓扑相变点解析解, 由(20)式确定. (b)—(d) 当常数势强度$M=1$, $-3$和$-4$时, 能隙$\varDelta_{\mathrm{g}}$和$Z_{2}$拓扑不变量Q随无序强度V的变化. (b)插图对应的是无序强度$V=0.2$时, L能级对应的波函数分布. 这里, $\varDelta=0.4$和$L=2000$
Fig. 1. The $Z_{2}$ topological invariant Q as a function of the disorder strength V and constant potential M. The colorbar shows the value of the $Z_{2}$ topological invariant Q. The green dashed line represents the analytical solution of the topological phase transition point, determined by Eq. (20). Energy gap $\varDelta_{\mathrm{g}}$ and the $Z_{2}$ topological invariant Q as a function of V for (b) $M=1$, (c) $M=-3$ and (d) $M=-4$. The wave function distributions corresponding to the L energy levels at a disorder strength of $V=0.2$ in the inset of panel (b). Other parameters: $\varDelta=0.4$ and $L=2000$.
图 2 当系统尺寸$L=500$, M分别为(a)$M=1$和(b)$M=-3$时, 分形维度(${\varGamma}_n$)随着本征能量E和无序强度V的变化. 图中的颜色条代表分形维度(${\varGamma}_n$)的大小. (c)当$V=2$且$M=1$时, 不同系统尺寸下, 系统分形维度(${\varGamma}_n$)的值. (d)当$V=2$且$M=-3$时, 不同系统尺寸下, 系统分形维度(${\varGamma}_n$)的值. 其他参数取值为$\varDelta=0.4$
Fig. 2. The fractal dimension ${\varGamma}_n$ of different eigenstates as a function of the corresponding E and the modulation strength V with $L=500$ for (a)$M=1$ and (b)$M=-3$. (c) The fractal dimensions ${\varGamma}_n$ for different system sizes for $V=2$ and $M=1$. (d) The fractal dimensions ${\varGamma}_n$ for different system sizes for $V=2$ and $M=-3$. Other parameters: $\varDelta=0.4$.
-
[1] Nakajima S, Takei N, Sakuma K, Kuno Y, Marra P, Takahashi Y 2021 Nat. Phys. 17 844
Google Scholar
[2] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405
Google Scholar
[3] Hasan M X, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[4] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
Google Scholar
[5] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
Google Scholar
[6] Xiao T, Xie D, Dong Z, Chen T, Yi W, Yan B 2021 Sci. Bull. 66 2175
Google Scholar
[7] Szameit A, Rechtsman M C 2024 Nat. Phys. 20 905
Google Scholar
[8] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766
Google Scholar
[9] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438
Google Scholar
[10] Zhang Y Y, Chu R L, Zhang F C, Shen S Q 2012 Phys. Rev. B 85 035107
Google Scholar
[11] Jiang H, Wang L, Sun Q F, Xie X C 2009 Phys. Rev. B 80 165316
Google Scholar
[12] Li X Q, Zhang H H, Xu H, San H D, Wang X N, Qi S F, Qiao Z H 2024 Phys. Rev. B 109 155427
Google Scholar
[13] Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698
Google Scholar
[14] Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801
Google Scholar
[15] Velury S, Bradlyn B, Hughes T L 2021 Phys. Rev. B 103 024205
Google Scholar
[16] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力 2023 物理学报 72 177401
Google Scholar
Xu L, Li P L, Lü Z Z, Shen J, Qu F M, Liu G T, Lü L 2023 Acta Phys. Sin. 72 177401
Google Scholar
[17] 关欣, 陈刚 2023 物理学报 72 140301
Google Scholar
Guan X, Chen G 2023 Acta Phys. Sin. 72 140301
Google Scholar
[18] Gu Y, Lu Z P 2024 Chin. Phys. B 33 090202
Google Scholar
[19] Li G Q, Wang B H, Tang J Y, Peng P, Dong L W 2023 Chin. Phys. B 32 077102
Google Scholar
[20] Huang A H, Ke S S, Guan J H, Li J, Lou W K 2024 Chin. Phys. Lett. 41 097302
Google Scholar
[21] Chang Z W, Hao W C, Bustamante M, Liu X 2024 Chin. Phys. Lett. 41 037302
Google Scholar
[22] Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635
Google Scholar
[23] Prodan E, Hughes T L, Bernevig B A 2010 Phys. Rev. Lett. 105 115501
Google Scholar
[24] Cai X M, Lang L J, Chen S, Wang Y 2013 Phys. Rev. Lett. 110 176403
Google Scholar
[25] Liu J, Potter A C, Law K T, Lee P A 2012 Phys. Rev. Lett. 109 267002
Google Scholar
[26] Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806
Google Scholar
[27] Groth C W, Wimmer M, Akhmerov A R, Tworzydlo J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805
Google Scholar
[28] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L, Gadway B 2018 Science 362 929
Google Scholar
[29] Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461
Google Scholar
[30] Borchmann J, Farrell A, Pereg-Barnea T 2016 Phys. Rev. B 93 125133
Google Scholar
[31] Kitaev A Y 2001 Phys. Usp. 44 131
Google Scholar
[32] Ivanov D A 2001 Phys. Rev. Lett. 86 268
Google Scholar
[33] Zhu S L, Shao L B, Wang Z D, Duan L M 2011 Phys. Rev. Lett. 106 100404
Google Scholar
[34] Lindner N H, Berg E, Refael G, Stern A 2012 Phys. Rev. X 2 041002
Google Scholar
[35] Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083
Google Scholar
[36] Lang L J, Chen S 2012 Phys. Rev. B. 86 205135
Google Scholar
[37] Hua C B, Chen R, Xu D H, Zhou B 2019 Phys. Rev. B 100 205302
Google Scholar
[38] Hegde S S, Vishveshwara S 2016 Phys. Rev. B 94 115166
Google Scholar
[39] DeGottardi W, Thakurathi M, Vishveshwara S, Sen D 2013 Phys. Rev. B 88 165111
Google Scholar
[40] Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505
Google Scholar
[41] Jagannathan A 2021 Rev. Mod. Phys. 93 045001
Google Scholar
[42] Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18
[43] Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768
Google Scholar
[44] Longhi S 2019 Phys. Rev. Lett. 122 237601
Google Scholar
[45] Kobiałka A, Awoga O A, Leijnse M, Domański T, Holmvall P, Black-Schaffer A M 2024 Phys. Rev. B 110 134508
Google Scholar
[46] Hu Y C, Kane C L 2018 Phys. Rev. Lett. 120 066801
Google Scholar
[47] Tong L, Cheng S J, Guo H, Gao X L 2021 Phys. Rev. B 103 104203
Google Scholar
[48] Zhu J X 2016 Bogoliubov-de Gennes Method and Its Applications (Cham: Springer Cham
[49] Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407
Google Scholar
[50] Zhang P, Nori F 2016 New J. Phys. 18 043033
Google Scholar
[51] Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W J 2011 Phys. Rev. Lett. 106 057001
Google Scholar
[52] Fulga I C, Hassler F, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 83 155429
Google Scholar
[53] Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803
Google Scholar
[54] Li X, Sarma S D 2020 Phys. Rev. B 101 064203
Google Scholar
[55] Wang Y, Zhang L, Niu S, Yu D, Liu X J 2020 Phys. Rev. Lett. 125 073204
Google Scholar
[56] Longhi S 2020 Opt. Lett. 45 4036
Google Scholar
[57] Lang L J, Cai X M, Chen S 2012 Phys. Rev. Lett. 108 220401
Google Scholar
[58] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[59] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001
Google Scholar
[60] Lin C H, Sau J D, Das Sarma S 2012 Phys. Rev. B 86 224511
Google Scholar
[61] Prada E, San Jose P, Aguado R 2012 Phys. Rev. B 86 180503
Google Scholar
[62] Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803
Google Scholar
[63] Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 85 060507
Google Scholar
[64] Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D, Frolov S M 2019 Phys. Rev. Lett. 123 107703
Google Scholar
[65] Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V, Frolov S M 2021 Nat. Phys. 17 482
Google Scholar
计量
- 文章访问数: 591
- PDF下载量: 27
- 被引次数: 0