搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理信息神经网络的绝热捷径动力学分析

刘明 张斯淇 李宏

引用本文:
Citation:

基于物理信息神经网络的绝热捷径动力学分析

刘明, 张斯淇, 李宏

Dynamic analysis of shortcut to adiabaticity based on physical information neural network

LIU Ming, ZHANG Si-Qi, LI Hong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出一种基于物理信息神经网络的量子绝热捷径方案. 与传统的绝热捷径技术相比, 创新性地引入机器学习技术, 利用参数化的物理信息神经网络解含参数的微分方程, 将神经网络作为量子绝热演化过程的逼近函数, 并将含参数的微分方程和微分方程的各种物理约束条件作为参数化的神经网络的损失函数, 训练神经网络, 拟合量子系统演化过程, 获得布居反转的驱动控制函数. 数值实验表明, 量子系统可以在短时间内实现布居反转, 并且具有很高的保真度、很强的鲁棒性. 神经网络具有很强的计算能力, 适合复杂系统的驱动控制函数的生成. 与传统的绝热捷径技术相比, 具有更好的效果和更强的实用性.
    A quantum shortcut to adiabaticity scheme based on physics-informed neural networks is proposed in this work. Compared with traditional shortcut to adiabaticity technology, our method innovatively integrates machine learning methods by employing parameterized physics-informed neural networks to solve parameterized differential equations. The neural networks serve as an approximating function for quantum adiabatic evolution processes, while incorporating parameter-dependent differential equations and various physical constraints as components of the loss function. Through networks training, we effectively simulate quantum system dynamics and derive the driving control field for population inversion. Numerical simulations show that the quantum system can achieve rapid population inversion within significantly reduced time while maintaining high fidelity and exceptional robustness against parameter fluctuations. The neural networks exhibit remarkable computational capabilities, particularly suitable for generating control functions in complex quantum systems. Compared with conventional counter-diabatic driving and transitionless quantum driving methods, this PINN-based framework not only achieves better control performance but also provides the improved practicality for experimental implementations. The success of this method demonstrates its promising applications in quantum control tasks, including but not limited to quantum state preparation, quantum gate optimization, and adiabatic quantum computing acceleration.
  • 图 1  STAPINN原理设计图

    Fig. 1.  STAPINN principle design diagram.

    图 2  PINN方法仿真和Mathematica软件仿真无驱动布居转移情况对比图 (a) PINN仿真无驱动布居转移; (b) Mathematica软件中无驱动布居转移的仿真. 参数选取为: $ {t_0} = $$ 5 \times {10^{ - 12}} {\text{ s}}, \;{t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}}, \;{\varOmega _0} = 10 {\text{ MHz}}, \;\delta = 600 {\text{ }} {\text{MHz}} $

    Fig. 2.  Comparison between PINN method simulation and Mathematica software simulation of undriven population transfer: (a) PINN simulated undriven population transfer; (b) simulation of undriven population transfer in Mathematica software. The parameters are selected as: $ {t_0} = 5 \times $$ {10^{ - 12}} {\text{ s}}, \;{t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}}, \;{\varOmega _0} = 10 {\text{ MHz}}, \;\delta = 600 {\text{ MHz}} $.

    图 3  不同训练次数下的损失函数曲线图. 参数选取为$ {t_0} = 5 \times {10^{ - 12}} {\text{ s}}$, $ {t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}} $, $ {\varOmega _0} = 10 {\text{ MHz}}$, $\delta = $$ 600 {\text{ MHz}} $

    Fig. 3.  Loss function curves under different training times. The parameters are selected as: $ {t_0} = 5 \times {10^{ - 12}} {\text{ s}}, \;{t_{\text{f}}} = 2 \times $$ {10^{ - 10}} {\text{ s}}$, $ {\varOmega _0} = 10 {\text{ MHz}}, \;\delta = 600 {\text{ MHz}} $.

    图 4  STAPINN方法和Mathematica软件仿真加驱动的布居转移情况对比 (a) STAPINN仿真加驱动的布居转移情况; (b) Mathematica仿真加驱动的布居转移情况. 参数选取为: ${t_0} = 5 \times {10^{ - 12}} {\text{ s}} $, $ {t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}} $, ${\varOmega _0} = 10 {\text{ MHz}} $, $\delta = 600 {\text{ MHz}} $

    Fig. 4.  Comparison of driver population transfer after STAPINN method and Mathematica software simulation and optimization: (a) STAPINN simulation optimization drives population transfer; (b) population transfer driven by Mathematica simulation optimization. The parameters are selected as: $ {t_0} = 5 \times {10^{ - 12}} {\text{ s}}$, ${t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}} $, ${\varOmega _0} = $$ 10 {\text{ MHz}}$, $\delta = 600 {\text{ MHz}} $.

    图 5  (a)多项式展开的驱动函数和傅里叶级数展开的驱动函数对比图, 黄色曲线为STAPINN方法找到的驱动曲线, 蓝色曲线为多项式拟合的驱动曲线, 绿色曲线为傅里叶级数拟合的驱动曲线; (b)利用Mathematica软件模拟此驱动下的布居转移情况, 蓝色和褐色实线为傅里叶级数展开的驱动函数对应的布居数反转曲线, 红色和绿色虚线为多项式展开的驱动函数对应的布居反转曲线. 参数选取为: $ {t_0} = 5 \times $$ {10^{ - 12}} {\text{ s}} $, ${t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}} $, ${\varOmega _0} = 10 {\text{ MHz}} $, $\delta = 600 {\text{ MHz}} $

    Fig. 5.  (a) Comparison between the driver function of polynomial expansion and the driver function of Fourier series expansion. The yellow curve is the optimized driver curve found by STAPINN method, the blue curve is the driver curve of polynomial fitting expansion, and the green curve is the driver curve of Fourier series fitting expansion; (b) using Mathematica software to simulate the population transfer under this drive, the blue and brown solid lines are the population inversion curves corresponding to the driver function of Fourier series expansion, and the red and green dashed lines are the population inversion curves corresponding to the driver function of polynomial expansion. The parameters are selected as: $ {t_0} = 5 \times {10^{ - 12}} {\text{ s}} $, ${t_{\text{f}}} = 2 \times $$ {10^{ - 10}} {\text{ s}} $, ${\varOmega _0} = 10 {\text{ MHz}} $, $\delta = 600 {\text{ MHz}} $.

    图 6  (a)不同训练次数下的驱动曲线图; (b)不同训练次数下的驱动实现的布居转移情况对比图. 参数选取为: $ {t_0} = 5 \times $$ {10^{ - 12}} {\text{ s}}$, ${t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}} $, ${\varOmega _0} = 10 {\text{ MHz}} $, $\delta = 600 {\text{ MHz}} $

    Fig. 6.  (a) Drive curves under different training times; (b) comparison diagram of population transfer of the drive under different training times. Set the parameter to: $ {t_0} = 5 \times $$ {10^{ - 12}} {\text{ s}}$, ${t_{\text{f}}} = 2 \times {10^{ - 10}} {\text{ s}} $, ${\varOmega _0} = 10 {\text{ MHz}} $, $\delta = 600{\text{ }} {\text{ MHz}} $

    图 7  保真度随参数$ {\varOmega _0} $和$ \delta $的变化

    Fig. 7.  Variation of fidelity with parameter $ {\varOmega _0} $and $ \delta $.

  • [1]

    Vitanov N V, Halfmann T, Shore B W 2001 Annu Rev. Phys. Chem. 52 763Google Scholar

    [2]

    Law C K, Eberly J H 1996 Phys. Rev. Lett. 76 1055Google Scholar

    [3]

    Kuhn A, Hennrich M, Bondo T 1999 Appl Phys. B 69 373Google Scholar

    [4]

    Torosov B T, Guérin S, Vitanov N V 2011 Phys. Rev. Lett. 106 233001Google Scholar

    [5]

    Brif C, Chakrabarti R, Rabitz H 2010 New J. Phys. 12 075008Google Scholar

    [6]

    Demirplak M, Rice S A 2002 J. Chem. Phys. 116 8028Google Scholar

    [7]

    del Campo A 2011 Phys. Rev. A 84 031606Google Scholar

    [8]

    del Campo A 2013 Phys. Rev. Lett. 111 100502Google Scholar

    [9]

    Tian L 2012 Phys. Rev. Lett. 108 153604Google Scholar

    [10]

    Berry M V 2009 J. Phys. A: Math. Theor. 42 365303Google Scholar

    [11]

    Ibáñez S, Li Y C, Chen X 2015 Phys. Rev. A 92 062136Google Scholar

    [12]

    Song X K, Ai Q, Qiu J 2016 Phys. Rev. A 93 052324Google Scholar

    [13]

    Liu S, Chen Y H, Wang Y 2022 Phys. Rev. A 106 042430Google Scholar

    [14]

    Masuda S, Nakamura K 2008 Phys. Rev. A 78 062108Google Scholar

    [15]

    Masuda S, Nakamura K 2011 Phys. Rev. A 84 043434Google Scholar

    [16]

    Zhu J J, Chen X 2021 Phys. Rev. A 103 023307Google Scholar

    [17]

    Luo D W, Pyshkin P, Lam C H 2015 Phys. Rev. A 92 062127Google Scholar

    [18]

    Kang Y H, Chen Y H, Huang B H 2017 Ann. Phys. 529 1700004Google Scholar

    [19]

    Torrontegui E, Martínez-Garaot S, Muga J 2014 Phys. Rev. A 89 043408Google Scholar

    [20]

    Güngördü U, Wan Y, FasihiM A 2012 Phys. Rev. A 86 062312

    [21]

    张瑶, 张云波, 陈立 2021 物理学报 70 168702Google Scholar

    Zhang Y, Zhang Y B, Chen L 2021 Acta Phys. Sin. 70 168702Google Scholar

    [22]

    田十方, 李彪 2023 物理学报 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [23]

    方波浪, 王建国, 冯国斌 2022 物理学报 71 200601Google Scholar

    Fang B L, Wang J G, Feng G B 2022 Acta Phys. Sin. 71 200601Google Scholar

    [24]

    Cai Y H, He Y L, Lang S N, Cui X B, Zhang X Q, Yao Z J 2025 Comput. Geosci. 196 105857Google Scholar

    [25]

    Nursyiva I, Maharani A B, Fatimah N H, Sugiyarto S, Danang A P 2025 Results Appl. Math. 25 100539Google Scholar

    [26]

    Ko T, Kim D, Park J, Lee S H 2025 Appl. Energy 382 125318Google Scholar

    [27]

    Zheng J C, Yang Y L 2024 Appl. Soft Comput. 167 112370Google Scholar

    [28]

    Chen X, Peng W Q 2025 Commun. Theor. Phys. 77 025002Google Scholar

    [29]

    Roy A, Chatterjee T, Adhikari S 2024 Probab. Eng. Mech. 78 103701Google Scholar

    [30]

    Han J, Jentzen A, Weinan E 2018 Proc. Natl. Acad. Sci. U. S. A 115 8505Google Scholar

    [31]

    Rudy H S, Brunton L S, Proctor L J, Kutz N 2017 Sci. Adv. 3 e1602614Google Scholar

    [32]

    Raissi M, Karniadakis G E 2018 J. Comput. Phys. 357 125Google Scholar

    [33]

    Li J, Chen Y 2021 Commun. Theor. Phys. 73 015001Google Scholar

    [34]

    Pu J C, Li J, Chen Y 2021 Nonlinear Dyn. 105 1723

    [35]

    Pu J C, Chen Y 2022 Chaos, Solitons Fractals 160 112182Google Scholar

    [36]

    Lin S N, Chen Y 2022 J. Comput. Phys. 41 898

    [37]

    Ding Y C, Ban Y, Martín J, Solano E, Casanova J, Chen X 2021 Phys. Rev. A 103 L040401Google Scholar

    [38]

    Norambuena A, Mattheakis M, González F, Coto R 2024 Phys. Rev. Lett 132 010801Google Scholar

  • [1] 陈鹏博, 王少义, 张文博, 温家星, 吴玉迟, 赵宗清, 王度. 基于深度学习的长波红外介电光栅加速器结构设计. 物理学报, doi: 10.7498/aps.74.20250130
    [2] 孙康生, 韩超, 秦海峰, 顾涛, 李薇, 于程. 基于注意力卷积神经网络的高质量全息图快速生成算法. 物理学报, doi: 10.7498/aps.74.20241713
    [3] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, doi: 10.7498/aps.73.20240171
    [4] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, doi: 10.7498/aps.73.20231902
    [5] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, doi: 10.7498/aps.73.20240050
    [6] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, doi: 10.7498/aps.73.20240343
    [7] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, doi: 10.7498/aps.72.20231069
    [8] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, doi: 10.7498/aps.72.20221374
    [9] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, doi: 10.7498/aps.72.20222381
    [10] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, doi: 10.7498/aps.71.20211373
    [11] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, doi: 10.7498/aps.71.20221504
    [12] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, doi: 10.7498/aps.70.20202075
    [13] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, doi: 10.7498/aps.70.20210403
    [14] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, doi: 10.7498/aps.69.20200805
    [15] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, doi: 10.7498/aps.69.20201019
    [16] 张春玲, 刘文武. 基于绝热捷径快速实现远距离的四维纠缠态的制备. 物理学报, doi: 10.7498/aps.67.20180315
    [17] 张彦超, 刘云, 张海峰, 程辉, 熊菲. 基于在线社交网络的信息传播模型. 物理学报, doi: 10.7498/aps.60.050501
    [18] 张睿超, 王连海, 岳成庆. 微分方程的部分Hamilton化与积分. 物理学报, doi: 10.7498/aps.56.3050
    [19] 杨鹏飞. 一类带限定变换的二阶耦合线性微分方程组的解析解. 物理学报, doi: 10.7498/aps.55.5579
    [20] 吴惠彬, 张永发, 梅凤翔. 求解微分方程的Hojman方法. 物理学报, doi: 10.7498/aps.55.4987
计量
  • 文章访问数:  293
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-07
  • 修回日期:  2025-03-27
  • 上网日期:  2025-04-08

/

返回文章
返回