搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度铝铁金等离子体辐射不透明度数据库

曾交龙 高城 袁建民

引用本文:
Citation:

低密度铝铁金等离子体辐射不透明度数据库

曾交龙, 高城, 袁建民

Database of radiation opacity of low-density lumnium, iron and gold plasmas

ZENG Jiaolong, GAO Cheng, YUAN Jianmin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 等离子体不透明度在辐射输运和辐射流体力学研究中具有重要的应用, 在实际应用中, 这些参数主要依赖于理论研究获得, 实验提供了对理论计算精度的检验. 在细致能级模型的理论框架下, 对铝、铁和金等离子体的辐射不透明度进行了系统的理论研究, 建立了在密度0.001—0.1 g/cm3和温度1—300 eV范围内光谱分辨的辐射不透明度和Rosseland和Planck平均不透明度数据库. 不透明度的理论研究涉及到特定等离子体条件下的大量量子态, 在复杂的金等离子体条件下, 量子态的数目可能以亿计, 甚至达到万亿乃至更大, 因而其精确的研究显然具有很大的挑战性. 对于高Z的金等离子体, 公开发表的不透明度数据非常少, 本工作提供的数据库为高Z不透明度研究提供了参考. 对中低Z的铝和铁等离子体, 本课题组以前公开发表的工作很好地解释了实验结果, 表明了理论方法的可靠性. 本文与国际上ATOMIC程序得到的理论结果进行比较, 分析两种方法得到结果的异同, 大部分等离子体条件下, 两者符合较好, 对于有差异的部分, 指出了差异的物理根源. 本文数据集可在https://doi.org/10.57760/sciencedb.22232中访问获取.
    Radiative opacity plays an important role in investigating radiative transfer, radiation hydrodynamics and other relative disciplines. In practical applications, these data are mainly obtained by theoretical calculations. The accuracy of the theories is checked by limited experiments. Within the theoretical framework of detailed level models, systematic theoretical investigations of the radiative opacity of plasmas such as aluminum, iron, and gold plasmas are conducted. A database of spectrally resolved radiative opacities and Rosseland and Planck mean opacities is established for densities ranging from 0.001 to0.1 g/cm3 and temperatures from 1 to 300 eV. A data base is built based on these theoretical opacities. A huge number of quantum states are involved in the calculation of opacity, especially for high-Z gold plasmas. This poses a great challenge for obtaining accurate opacity of gold plasma. For such high-Z plasmas, it is necessary to develop other codes such as unresolved transition arrays or even average atom models to quickly obtain the opacity. Accurate opacity data are very lacking for such high-Z plasmas and the data presented in this library provides important references for other less detailed opacity codes.For aluminum and iron plasmas, their opacities are compared with those from the most accurate code ATOMIC. It is found that they are in good agreement for most cases of plasma conditions. Yet, discrepancies are still found in a few cases of plasma densities and temperatures, as indicated in the following figure(Fig. S1), which shows that the bound-free opacities obtained by our code and those from the ATOMIC are in good agreement. At photon energy of approximately 850 eV, however, some strong lines of aluminum plasma are notably absent in Al plasma generated by other codes, which will affect the radiative transfer in the x-ray region. In our code, we avoid such problems by including all possible line absorption and photoionization channels. The present dataset should be helpful in studying inertial confinement fusion, plasma physics and astrophysics. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.22232.
  • 图 1  密度为0.1 g/cm3、温度为100 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Fig. 1.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.1 g/cm3 and a temperature 100 eV.

    图 2  密度为0.1 g/cm3、温度为10 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Fig. 2.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.1 g/cm3 and a temperature 10 eV.

    图 3  密度为0.001 g/cm3、温度为100 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Fig. 3.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.001 g/cm3 and a temperature 100 eV.

    图 4  密度为0.001 g/cm3、温度为10 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Fig. 4.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.001 g/cm3 and a temperature 10 eV.

    图 5  密度为0.1 g/cm3、温度为100 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Fig. 5.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.1 g/cm3 and a temperature 100 eV.

    图 6  图5在光子能量0—1500 eV范围内的放大, 密度为0.1 g/cm3、温度为100 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较. 这个光子能量范围决定了Rosseland和Planck平均不透明度

    Fig. 6.  Comparison of opacity in photon energy range of 0–1500 eV obtained by present work and ATOMIC code for Fe plasma at a density of 0.1 g/cm3 and a temperature 100 eV. The Rosseland and Planck mean opacities are largely contributed by this photon energy range.

    图 7  密度为0.1 g/cm3、温度为10 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Fig. 7.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.1 g/cm3 and a temperature 10 eV.

    图 8  密度为0.001 g/cm3、温度为100 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Fig. 8.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.001 g/cm3 and a temperature 100 eV.

    图 9  密度为0.001 g/cm3、温度为10 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Fig. 9.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.001 g/cm3 and a temperature 10 eV.

    图 10  Fe等离子体不透明度图9在光子能量0—1200 eV范围内的放大, 密度为0.001 g/cm3、温度为10 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Fig. 10.  Comparison of opacity in a photon energy range of 0–1200 eV obtained by present work and ATOMIC code for Fe plasma at a density of 0.001 g/cm3 and a temperature 10 eV.

    图 11  密度为0.01 g/cm3、温度分别为10, 20, 40, 100, 200 eV条件下的Au等离子体不透明度

    Fig. 11.  Opacity of Au plasma at a density of 0.01 g/cm3 and temperatures of 10, 20, 40, 100, 200 eV.

    图 12  密度为0.01 g/cm3、温度为100 eV条件下的Au等离子体不透明度在两个主要谱线吸收区域的放大

    Fig. 12.  Opacity of Au plasma at a density of 0.01 g/cm3 and a temperature of 100 eV contributed dominantly by line absorption.

    表 1  铝等离子体在不同密度和不同温度T条件下的Rosseland和Planck平均不透明度(cm2/g)

    Table 1.  Rosseland and Planck mean opacities (cm2/g) of Al plasmas at different densities and different temperatures.

    T/eV0.001 g/cm30.005 g/cm30.01 g/cm30.05 g/cm30.1 g/cm3
    Rosse.PlanckRosse.PlanckRosse.PlanckRosse.PlanckRosse.Planck
    27433350011087959474839110647474197177509402629180822359046
    575514462087666832911913806582579011354230749118019
    101042123922314149923704.4173959399.6284221350436801
    201246287043385404165206.44525114575568122267962396
    50405.45686.71711101532826.8125987321.4183809899.520553
    10013.35102.8770.71430.02141.81748.41575.152409.4875.083486.0
    1501.85666.0307.442102.9117.045142.6975.255399.56136.60626.05
    2001.011113.102.888208.527.2548254.7732.294366.7168.368447.57
    2500.63249.9661.903161.384.4554239.3722.087461.3751.632571.70
    3000.44615.5751.18068.4282.7127123.4815.009353.1638.217499.53
    下载: 导出CSV

    表 2  铁等离子体在不同密度和不同温度T条件下的Rosseland和Planck平均不透明度(cm2/g)

    Table 2.  Rosseland and Planck mean opacities (cm2/g) of Fe plasmas at different densities and different temperatures.

    T/eV0.001 g/cm30.005 g/cm30.01 g/cm30.05 g/cm30.1 g/cm3
    Rosse.PlanckRosse.PlanckRosse.PlanckRosse.PlanckRosse.Planck
    2692151227159358514391510102914380510065212043285765113541
    59788136192349827432317423513348273529655280361748
    105315298791213132782161943411426873385853155242038
    207161369741258443595157004607125757509313115054002
    5014455884.94158120065332.3143157820.316013879316451
    10028.181047.9103.61480.7191.431796.2698.522675.010643285.1
    15026.391153.876.251883.5114.022283.2257.793101.6358.93324.9
    2009.206507.1449.101130.587.1431487.9245.452462.3349.52887.7
    2502.560118.7915.45424.0936.795661.47173.291455.3280.11878.9
    3001.00928.0965.710127.3713.817229.0779.424685.91158.01000.9
    下载: 导出CSV

    表 3  金等离子体在不同密度和不同温度T条件下的Rosseland和Planck平均不透明度(cm2/g)

    Table 3.  Rosseland and Planck mean opacities (cm2/g) of Au plasmas at different densities and different temperatures.

    T/eV0.001 g/cm30.005 g/cm30.01 g/cm30.05 g/cm30.1 g/cm3
    Rosse.PlanckRosse.PlanckRosse.PlanckRosse.PlanckRosse.Planck
    225768512054385754878492685367044582431703575235122
    515954382793043744722378624687246119478134342045362
    1014646430512193548723266835115436889551483993255264
    203779301355571349036315365538716392401014639855
    50156572581922868320999326271110886311311492
    100594.75570882.96501104169261648789421088307
    150346.72781683.53523922.538901460508817075579
    200181.21239383.61830495.82099874.0283810933156
    25057.16529.3212.2932.5298.41127561.71679699.81945
    30011.19342.669.32573.9138.7717.1349.91093456.51284
    下载: 导出CSV
  • [1]

    Hurricane O A, Patel P K, Betti, R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [2]

    Davidson S J, Foster J M, Smith C C, Warburton K A, Rose S J 1988 Appl. Phys. Lett. 52 847Google Scholar

    [3]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J Jr, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784Google Scholar

    [4]

    Qiang Y, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Wang D M, Xu Z P, You H B, Zhang F Q, Li Z H, Wang G Q, Xiao D L, Wu Z Q, Meng S J, Huang X B, Xu Q, Zhou S T, Zhang D Y, Zhang S Q, Ren X D, Ji C, Li Y, Cai P T, Ren J, Chen S, Zhang H Y 2024 Phys. Rev. E 110 065205Google Scholar

    [5]

    Zeng J L, Jin F T, Yuan J M 2001 Chin. Phys. Lett. 18 924

    [6]

    Zeng J L, Jin F T, Yuan J M, Lu Q S, 2000 Phys. Rev. E 62 7251Google Scholar

    [7]

    Zeng J L, Yuan J L, Lu Q S 2001 Phys. Rev. E 64 066412Google Scholar

    [8]

    Zeng J L, Yuan J M 2002 Phys. Rev. E. 66 016401Google Scholar

    [9]

    Jin F T, Zeng J L, Yuan J M 2004 Phys. Plasmas 11 4318Google Scholar

    [10]

    Winhart G, Eidmann K, Iglesias C A, Bar-Shalom A 1996 Phys. Rev. E 53 R1332Google Scholar

    [11]

    Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735Google Scholar

    [12]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah, J Jr, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002Google Scholar

    [13]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302Google Scholar

    [14]

    Jin F T, Zeng J L, Yuan J M 2003 Phys. Rev. E 68 066401

    [15]

    Zeng J L, Jin F T, Zhao G, Yuan J M 2003 Chin. Phys. Lett. 20 862Google Scholar

    [16]

    Gao C, Zeng J L 2008 Phys. Rev. E 78 046407Google Scholar

    [17]

    靳奉涛, 曾交龙, 袁建民 2004 计算物理 21 121Google Scholar

    Jin F T, Zeng J L, Yuan J M 2004 Chin. J. Comput. Phys. 21 121Google Scholar

    [18]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Golovkin I E, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M E, Wilson B G 2015 Nature 517 56Google Scholar

    [19]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001Google Scholar

    [20]

    Eidmann K, Bar-Shalom A, Saemann A, Winhart G, 1998 Europhys. Lett. 44 459Google Scholar

    [21]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2011 Phys. Plasmas 18 113301Google Scholar

    [22]

    Zhang J Y, Yang G H, Yang J M, Ding Y N, Zhang B H, Zheng Z J, Yan J 2007 Phys. Plasmas 14 103301Google Scholar

    [23]

    Zeng J L, Zhao G, Yuan J M 2006 Chin. Phys. Lett. 23 660Google Scholar

    [24]

    Zeng J L, Yuan J M 2006 Phys. Rev. E 74 025401R

    [25]

    Zeng J L, Yuan J M 2007 Phys. Rev. E 76 026401Google Scholar

    [26]

    Zeng J L 2008 J. Phys. B 41 125702Google Scholar

    [27]

    Gao C, Zeng J L, Jin F T, Yuan J M 2013 High Energy Density Phys. 9 419Google Scholar

    [28]

    曾交龙2005使用细致谱项模型研究铝等离子体的辐射不透明度 (长沙: 国防科技大学出版社)

    Zeng J L 2005 Detailed Term Accounting Investigation on Opacity of Aluminium Plasmas (Changsha: National University of Defense Technology Press

    [29]

    Zeng J L, Jin F T, Yuan J M 2006 Front. Phys. China 1 468Google Scholar

    [30]

    靳奉涛, 曾交龙, 袁建民 2005 物理 34 820Google Scholar

    Jin F T, Zeng J L, Yuan J M 2005 Physics 34 820Google Scholar

    [31]

    曾交龙, 袁建民, 赵增秀, 陆启生 2001 强激光与粒子束 13 60

    Zeng J L, Yuan J M, Zhao Z X, Lu Q S 2001 High Power Laser Part. 13 60

    [32]

    Iglesias C A, Rogers F J 1991 Astrophys. J. 371 408Google Scholar

    [33]

    Seaton M J, Yan Y, Mihalas D, Pradhan A K 1994 Mon. Not. R. Astron. Soc. 266 805Google Scholar

    [34]

    Hansen S B, Bauche J, Bauche-Arnoult C, Gu M F 2007 High Energy Density Phys. 3 109Google Scholar

    [35]

    Porcherot Q, Pain J C, Gilleron F, Blenski T A 2011 High Energy Density Phys. 7 234Google Scholar

    [36]

    Blancard C, Cosse P, Faussurier G 2012 Astrophys. J. 745 10Google Scholar

    [37]

    Colgan J, Kilcreasea D P, Magee Jr N H, Armstronga G S J, Abdallah Jr J, Sherrill M E, Fontes C J, Zhang H L, Hakel P 2013 High Energy Density Phys. 9 369Google Scholar

    [38]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 MRE 9 047801

    [39]

    Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasmas 25 023301Google Scholar

    [40]

    Gang X, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 Astrophys. J. 816 36Google Scholar

    [41]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y B, Yan G B, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [42]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y, Wu Y 2024 Chin. Phys. B 33 053101Google Scholar

    [43]

    Zeng J L, Li Y J, Hou Y, Yuan J M, 2023 Phys. Rev. E 107 L033201Google Scholar

    [44]

    Huang Y H, Liang Z H, Zeng J L, Yuan J M, 2024 Phys. Rev. E 109 045210Google Scholar

    [45]

    Liu P F, Gao C, Hou Y, Zeng J L, Yuan J M 2018 Commun. Phys. 1 95Google Scholar

    [46]

    Zeng J L, Li Y J, Yuan J M 2021 J. Quant. Spectrosc. Radiat. Transf. 272 107777Google Scholar

    [47]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M, 2024 Results Phys. 58 107522Google Scholar

    [48]

    Zeng J L, Ye C, Liu P F, Gao C, Li Y J, Yuan J M 2022 Int. J. Mol. Sci. 23 6033Google Scholar

    [49]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022 Sci. China-Phys. Mech. Astron. 65 233011Google Scholar

    [50]

    Gao C, Zeng J L, Li Y Q, Jin F T, Yuan J M 2013 High Energy Density Phys. 9 583Google Scholar

  • [1] 安斯腰力吐, 王佟, 肖利丹, 刘迪, 张夏, 闫冰. CO+分子离子X2Σ+, A2Π和B2Σ+态的不透明度. 物理学报, doi: 10.7498/aps.74.20250380
    [2] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, doi: 10.7498/aps.72.20230455
    [3] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. 氮气分子${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}} \text{和} { b}^1\Pi_{\rm u} $电子态的不透明度. 物理学报, doi: 10.7498/aps.71.20220043
    [4] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. $ {\text{N}}_{2}^{+} $分子离子$ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{\text{2}}}{{\Pi}_{\text{u}}} $$ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $态的不透明度. 物理学报, doi: 10.7498/aps.71.20220734
    [5] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, doi: 10.7498/aps.67.20171817
    [6] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, doi: 10.7498/aps.66.023101
    [7] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, doi: 10.7498/aps.63.053104
    [8] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.62.233302
    [9] 张继彦, 杨家敏, 杨国洪, 丁耀南, 李军, 颜君, 吴泽清, 丁永坤, 张保汉, 郑志坚. 激光直接加热自背光法辐射不透明度测量方法探索. 物理学报, doi: 10.7498/aps.62.195201
    [10] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富. 激光冲击波压缩稠密铝辐射不透明度实验研究. 物理学报, doi: 10.7498/aps.62.125202
    [11] 董富通, 王菲鹿, 仲佳勇, 赵刚. Fe离子M壳层不可分辨跃迁系不透明度研究. 物理学报, doi: 10.7498/aps.61.163201
    [12] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, doi: 10.7498/aps.59.7824
    [13] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, doi: 10.7498/aps.57.4076
    [14] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验. 物理学报, doi: 10.7498/aps.57.985
    [15] 马 文, 靳奉涛, 袁建民. 平均原子模型中谱线位置偏移对辐射不透明度的影响. 物理学报, doi: 10.7498/aps.56.5709
    [16] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, doi: 10.7498/aps.56.152
    [17] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程. 物理学报, doi: 10.7498/aps.54.587
    [18] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.50.1475
    [19] 王藩侯, 陈敬平, 孟续军, 周显明, 李西军, 孙永盛, 经福谦. 冲击压缩产生的氩等离子体辐射不透明度研究. 物理学报, doi: 10.7498/aps.50.1308
    [20] 滕华国, 沈百飞, 张文琦, 徐至展. 组态相互作用效应对类钠铜离子自电离速率和分支比的影响. 物理学报, doi: 10.7498/aps.43.205
计量
  • 文章访问数:  212
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-08
  • 修回日期:  2025-04-27
  • 上网日期:  2025-05-17

/

返回文章
返回