搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚焦超几何高斯二型光束在海洋湍流中的信道容量

张荣香 代华德 刘涛 王唯钰 周允城 毕慧聪

引用本文:
Citation:

聚焦超几何高斯二型光束在海洋湍流中的信道容量

张荣香, 代华德, 刘涛, 王唯钰, 周允城, 毕慧聪
cstr: 32037.14.aps.74.20250306

Channel capacity of focused hypergeometric-Gaussian type-II beams in ocean turbulence

ZHANG Rongxiang, DAI Huade, LIU Tao, WANG Weiyu, ZHOU Yuncheng, BI Huicong
cstr: 32037.14.aps.74.20250306
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究了利用聚焦透镜来提高超几何高斯二型(hypergeometric-Gaussian type-II, HyGG-II)光束在海洋湍流中传输时的信道容量的方法. 首先推导得到使用聚焦透镜之后HyGG-II光束在海洋湍流中的信道容量表达式, 随后仿真分析了不同光源参数和海洋湍流参数对信道容量的影响, 并与未加透镜时HyGG-II光束以及拉盖尔高斯光束的信道容量进行对比. 此外为了探究聚焦透镜增强信道容量的原因, 还仿真分析了聚焦HyGG-II光束的光强随传输距离的分布. 结果表明: 通过使用聚焦透镜可以使HyGG-II光束的信道容量在一定传输距离范围之内获得不同程度的增强, 最佳增强效果出现在光强的最大会聚位置附近. 通过增大光波长、调节聚焦透镜的焦距或HyGG-II光束的束腰半径, 还可以使增强效果进一步改善. 在小单位质量动能耗散率和大温度均方差耗散率的海洋湍流环境中, 使用聚焦透镜可以得到更明显的信道容量增强效果. 与拉盖尔-高斯(Laguerre-Gaussian, LG)光束相比, 传输相同距离时, 不管是否使用聚焦透镜, HyGG-II光束的信道容量都更好. 本文研究结果可以为提高基于涡旋光束的水下无线光通信系统性能提供一定的参考.
    The channel capacity of the hypergeometric-Gaussian type-II (HyGG-II) beam propagating in ocean turbulence is investigated in this work. A method of utilizing a focusing mirror to enhance the channel capacity is further proposed. Comparison among focused HyGG-II beam, unfocused HyGG-II beam and Laguerre Gaussian beam is also carried out. The results indicate that the employment of focusing mirrors is effective in enhancing the channel capacity, however, the corresponding transmission distance range is restricted to about 100 m. Optimal enhancement is observed near the convergence point of the HyGG-II beam focused by mirrors. By increasing the wavelength and adjusting the focal length of the focusing mirror or the waist radius of the HyGG-II beam, the channel capacity can be further improved. Moreover, when the HyGG-II beam is transmitted in oceanic turbulence characterized by a smaller dissipation rate of kinetic energy per unit mass and a larger dissipation rate of mean-squared temperature, the enhancement effect of the focusing mirrors on the channel capacity is more pronounced. Compared with Laguerre Gaussian beams, HyGG-II beams exhibit superior channel capacity at the same transmission distance, no matter whether focusing mirrors are used. The findings can serve as a reference for designing underwater wireless optical communication systems based on the HyGG-II-beam.
      通信作者: 张荣香, zrx@hbu.edu.cn ; 刘涛, taoliu@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071180)和河北省光电信息材料实验室绩效补贴基金(批准号: 22567634H)资助的课题.
      Corresponding author: ZHANG Rongxiang, zrx@hbu.edu.cn ; LIU Tao, taoliu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071180) and the Optoelectronic Information Materials Laboratory Performance Subsidy Fund of Hebei Province, China (Grant No. 22567634H).
    [1]

    Xu L F, Zhou Z C, Ma X D, Korotkova O, Wang F 2024 Opt. Lett. 49 246Google Scholar

    [2]

    郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 物理学报 74 014203Google Scholar

    Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [3]

    Pan Y T, Wang P, Wang W, Li S, Cheng M J, Guo L X 2021 Opt. Express 29 12644Google Scholar

    [4]

    Zhan H C, Wang L, Wang W N 2022 J. Lightwave Technol. 40 4129Google Scholar

    [5]

    Zhan H C, Wang L, Wang W N, Zhao S M 2023 J. Opt. Soc. Am. B 40 187Google Scholar

    [6]

    Wang H, Li H, Zhou Y L, Wang P 2022 Opt. Eng. 61 046102

    [7]

    王明军, 刘豪振, 张佳琳, 王姣 2023 光学学报 43 2401004Google Scholar

    Wang M J, Liu H Z, Zhang J L, Wang J 2023 Acta Opt. Sin. 43 2401004Google Scholar

    [8]

    刘昌勋, 孙嘉敏, 商祥年, 顾永建, 李文东 2025 激光与光电子学进展 62 0301002Google Scholar

    Liu C X, Sun J M, Shang X N, Gu X N, Li W D 2025 Laser Optoelectron. Prog. 62 0301002Google Scholar

    [9]

    Karimi E, Piccirillo B, Marrucci L, Santamato E 2008 Opt. Express 16 21069Google Scholar

    [10]

    Jin G, Bian L R, Huang L, Tang B 2020 Opt. Laser Technol. 126 106124Google Scholar

    [11]

    Khannous F, Ebrahim A A A, Belafhal A 2016 Chin. Phys. B 25 044206Google Scholar

    [12]

    Gradshteyn I S, Ryzhik I M 2014 Table of Integrals, Series, and Products (New York: Academic Press) pp325–331

    [13]

    Torner L, Torres J, Carrasco S 2005 Opt. Express 13 873Google Scholar

    [14]

    Yang H B, Yan Q Z, Wang P, Hu L F, Zhang Y X 2022 Opt. Express 30 9053Google Scholar

    [15]

    Wang X, Wang L, Zhao S 2021 J. Mar. Sci. Eng. 9 442Google Scholar

    [16]

    Nikishov V V, Nikishov V I 2020 Int. J. Fluid Mech. Res. 27 82

    [17]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [18]

    Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Appl. Opt. 60 4135Google Scholar

    [19]

    Tong Z J, Yang X Q, Chen X, Zhang H, Zhang Y F, Zou H W, Zhao Y F, Xu J 2021 Opt. Express 29 20262Google Scholar

    [20]

    Zhou H Y, Zhang M L, Wang X Z, Ren X M 2022 J. Lightwave Technol. 40 3654Google Scholar

    [21]

    Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451Google Scholar

    [22]

    Zhang T Y, Fei C, Wang Y, Du J, Xie Y T, Zhang F, Tian J H, Zhang G W, Wang G X, Hong X J, He S L 2024 Opt. Express 32 36207Google Scholar

    [23]

    Ma Z Q, Gao G J, Zhang J L, Guo Y G, Zhang F, Huang S G 2025 J. Lightwave Technol. 43 1140Google Scholar

  • 图 1  不同波长下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Fig. 1.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different wavelengths.

    图 2  不同焦距下聚焦HyGG-II光束和非聚焦HyGG-II光束的信道容量随传输距离的变化

    Fig. 2.  Variations of channel capacity with transmission distance for unfocused HyGG-II beam and focused HyGG-II beam with different focal lengths.

    图 3  聚焦HyGG-II光束随传输距离的归一化光强分布

    Fig. 3.  Normalized intensity distributions of focused HyGG-II beam with transmission distance.

    图 4  不同束腰半径下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Fig. 4.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different beam waists.

    图 5  不同单位质量动能耗散率下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Fig. 5.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different dissipation rates of kinetic energy per unit mass.

    图 6  不同温度均方差耗散率下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Fig. 6.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different dissipation rates of mean-squared temperature.

    图 7  不同温度盐度贡献比下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Fig. 7.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different ratios of temperature and salinity contributions.

  • [1]

    Xu L F, Zhou Z C, Ma X D, Korotkova O, Wang F 2024 Opt. Lett. 49 246Google Scholar

    [2]

    郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 物理学报 74 014203Google Scholar

    Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [3]

    Pan Y T, Wang P, Wang W, Li S, Cheng M J, Guo L X 2021 Opt. Express 29 12644Google Scholar

    [4]

    Zhan H C, Wang L, Wang W N 2022 J. Lightwave Technol. 40 4129Google Scholar

    [5]

    Zhan H C, Wang L, Wang W N, Zhao S M 2023 J. Opt. Soc. Am. B 40 187Google Scholar

    [6]

    Wang H, Li H, Zhou Y L, Wang P 2022 Opt. Eng. 61 046102

    [7]

    王明军, 刘豪振, 张佳琳, 王姣 2023 光学学报 43 2401004Google Scholar

    Wang M J, Liu H Z, Zhang J L, Wang J 2023 Acta Opt. Sin. 43 2401004Google Scholar

    [8]

    刘昌勋, 孙嘉敏, 商祥年, 顾永建, 李文东 2025 激光与光电子学进展 62 0301002Google Scholar

    Liu C X, Sun J M, Shang X N, Gu X N, Li W D 2025 Laser Optoelectron. Prog. 62 0301002Google Scholar

    [9]

    Karimi E, Piccirillo B, Marrucci L, Santamato E 2008 Opt. Express 16 21069Google Scholar

    [10]

    Jin G, Bian L R, Huang L, Tang B 2020 Opt. Laser Technol. 126 106124Google Scholar

    [11]

    Khannous F, Ebrahim A A A, Belafhal A 2016 Chin. Phys. B 25 044206Google Scholar

    [12]

    Gradshteyn I S, Ryzhik I M 2014 Table of Integrals, Series, and Products (New York: Academic Press) pp325–331

    [13]

    Torner L, Torres J, Carrasco S 2005 Opt. Express 13 873Google Scholar

    [14]

    Yang H B, Yan Q Z, Wang P, Hu L F, Zhang Y X 2022 Opt. Express 30 9053Google Scholar

    [15]

    Wang X, Wang L, Zhao S 2021 J. Mar. Sci. Eng. 9 442Google Scholar

    [16]

    Nikishov V V, Nikishov V I 2020 Int. J. Fluid Mech. Res. 27 82

    [17]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [18]

    Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Appl. Opt. 60 4135Google Scholar

    [19]

    Tong Z J, Yang X Q, Chen X, Zhang H, Zhang Y F, Zou H W, Zhao Y F, Xu J 2021 Opt. Express 29 20262Google Scholar

    [20]

    Zhou H Y, Zhang M L, Wang X Z, Ren X M 2022 J. Lightwave Technol. 40 3654Google Scholar

    [21]

    Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451Google Scholar

    [22]

    Zhang T Y, Fei C, Wang Y, Du J, Xie Y T, Zhang F, Tian J H, Zhang G W, Wang G X, Hong X J, He S L 2024 Opt. Express 32 36207Google Scholar

    [23]

    Ma Z Q, Gao G J, Zhang J L, Guo Y G, Zhang F, Huang S G 2025 J. Lightwave Technol. 43 1140Google Scholar

  • [1] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 李军依, 叶玉儿, 凌晨, 李林, 刘泱, 夏勇. 超透镜聚焦光环的产生及其在冷分子光学囚禁中的应用. 物理学报, 2021, 70(16): 167802. doi: 10.7498/aps.70.20210443
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [6] 吴彤, 季小玲, 罗燏娟. 海洋湍流中自适应光学成像系统特征参量研究. 物理学报, 2018, 67(5): 054206. doi: 10.7498/aps.67.20171851
    [7] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究. 物理学报, 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [8] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [9] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [10] 郑晓毅, 龙银香. 基于cluster态的信道容量可控的可控量子安全直接通信方案. 物理学报, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [11] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [12] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [13] 王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞. 典型大气窗口太赫兹波传输特性和信道分析. 物理学报, 2016, 65(13): 134101. doi: 10.7498/aps.65.134101
    [14] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [15] 江月松, 王帅会, 欧军, 唐华. 基于拉盖尔-高斯光束的通信系统在非Kolmogorov湍流中传输的系统容量. 物理学报, 2013, 62(21): 214201. doi: 10.7498/aps.62.214201
    [16] 郑维涛, 吴逢铁, 张前安, 程治明. 双轴棱锥产生长距离近似无衍射光的新技术. 物理学报, 2012, 61(14): 144201. doi: 10.7498/aps.61.144201
    [17] 赵生妹, 刘静. 量子多址高斯信道的信息容量研究. 物理学报, 2010, 59(2): 771-777. doi: 10.7498/aps.59.771
    [18] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [19] 肖海林, 欧阳缮, 聂在平. 多输入多输出量子密钥分发信道容量研究. 物理学报, 2009, 58(10): 6779-6785. doi: 10.7498/aps.58.6779
    [20] 刘德森. 聚焦透镜棒的色差分析. 物理学报, 1982, 31(2): 226-233. doi: 10.7498/aps.31.226
计量
  • 文章访问数:  379
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-04-10
  • 上网日期:  2025-04-17
  • 刊出日期:  2025-06-05

/

返回文章
返回