-
环境友好的无机无铅双钙钛矿材料因具有由于优异的光电特性, 被认为是铅基钙钛矿材料的良好替代品之一. 本文采用水热法制备了一种非铅双钙钛矿材料Cs2AgInCl6, 利用金刚石对顶砧装置进行高压实验, 研究了室温下压力诱导Cs2AgInCl6的结构变化以及压力对其光电流、光学带隙的调控, 实验最高压力为41.1 GPa. 原位高压拉曼及同步辐射X射线衍射实验结果显示, 8.9 GPa时Cs2AgInCl6 发生了从立方相(Fm-3m)到四方相(I4/m)的相变. 原位高压吸收光谱显示带隙在相变前后随压力呈现反向变化趋势. 当压力增大到实验最高点时, 光电流值为常压值的2倍, 且卸压后依然保持. 本研究揭示了压力调控下的无铅双钙钛矿材料结构-性能关联机制, 为通过晶体工程与应变调控优化光电性能提供了可行策略. 压缩后功能的有效保留凸显了此类材料在非易失性压力可调谐光电探测器中的应用潜力.Environmentally friendly lead-free double perovskite materials have emerged as promising alternatives to lead-based perovskites due to their excellent optoelectronic properties and improved stability. In this study, a highly crystalline lead-free double perovskite, Cs2AgInCl6, is synthesized via a mild hydrothermal method, and its pressure-induced structural evolution and optoelectronic regulation up to 41.1 GPa are systematically investigated at room temperature by using diamond anvil cell (DAC) technology combined with multiple in-situ characterization methods. High-pressure synchrotron X-ray diffraction reveals a structural phase transition from the cubic phase (Fm-3m) to the tetragonal phase (I4/m) at 8.9 GPa. In-situ Raman spectroscopy further confirms this transition through the splitting of characteristic phonon modes, indicating enhanced structural anisotropy. Pressure-dependent optical absorption spectra show a distinct reversal in the trend of bandgap evolution during the phase transition, reflecting a strong coupling between the crystal structure and the electronic band structure. Remarkably, the photocurrent exhibits sustained pressure enhancement behavior, reaching twice the ambient pressure value at 41.1 GPa and the maintaining enhanced performance even after the pressure has been released completely, indicating that the structural changes caused by pressure are stable. These findings provide fundamental insights into the pressure-mediated structure-property relationships in lead-free double perovskites and offer viable strategies for optimizing optoelectronic performance through crystal engineering and strain modulation. The retained post-compression functions highlight their potential applications in non-volatile pressure-tunable photodetectors.
-
Keywords:
- lead-free double perovskite /
- photoelectric properties /
- pressure regulation /
- structural phase transition
-
图 2 (a) 常压下Cs2AgInCl6在不同光波长下的光响应图谱; (b) 光波长为450 nm, Cs2AgInCl6在不同压力下的光响应图谱; (c)—(e) Cs2AgInCl6的光电流密度(JPH), 光响应强度(R)和外部量子效率(EQE)随压力的变化趋势; (f) I-V曲线随压力的变化趋势
Fig. 2. (a) The optical response spectra of Cs2AgInCl6 under different light wavelengths at atmospheric pressure; (b) the optical response spectra of Cs2AgInCl6 under different pressures when the light wavelength is 450 nm; (c)–(e) the variation trends of the photocurrent density (JPH), optical response intensity (R) and external quantum efficiency (EQE) of Cs2AgInCl6 with pressure; (f) the variation trend of the I-V curve with pressure.
图 3 (a) Cs2AgInCl6的压致变色光学显微图; (b) Cs2AgInCl6的高压紫外-可见光吸收光谱; (c) 高压下Cs2AgInCl6晶体的带隙演化
Fig. 3. (a) The pressure-induced coloration optical micrographs of Cs2AgInCl6; (b) the high-pressure ultraviolet-visible light absorption spectrum of Cs2AgInCl6; (c) the band-gap evolution of Cs2AgInCl6 crystals under high pressure.
图 5 (a) Cs2AgInCl6的高压XRD图谱; (b) Cs2AgInCl6在2.1 GPa时的XRD图谱, (插图给出Cs2AgInCl6的立方相ab面晶体结构图); (c) Cs2AgInCl6在9.7 GPa时的XRD图谱(插图给出Cs2AgInCl6的四方相ab面晶体结构图); (d)—(f) Cs2AgInCl6的晶格参数(d)、晶胞体积(e)、键长(f)与压力的函数关系
Fig. 5. (a) The high-pressure XRD pattern of Cs2AgInCl6; (b) the XRD pattern of Cs2AgInCl6 at 2.1 GPa (the crystal structure diagram of the ab plane of the cubic phase of Cs2AgInCl6 is shown in the inset); (c) the XRD pattern of Cs2AgInCl6 at 9.7 GPa (the crystal structure diagram of the ab plane of the tetragonal phase of Cs2AgInCl6 is shown in the inset); (d)–(f) the relationship between the lattice parameters (d), cell volume (e), bond lengths (f) of Cs2AgInCl6 and pressure.
表 1 Cs2AgInCl6常压下的结构信息
Table 1. Structural information of Cs2AgInCl6 under normal pressure.
Compounds Cs2AgInCl6 Crystal Cubic Space group Fm-3m(225) a, b, c/Å 10.48713(3) V/Å3 1157.372 Atoms Wyckoff (x y z) Cs 8c(0.25 0.25 0.25) Ag 4b(0 0 0) In 4a(0 0 0) Cl 24e(0.24 0 0) Residualsa/%
Rwp and Rp as defined in GSAS.Rwp: 8.76%
Rp: 8.12% -
[1] Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418
Google Scholar
[2] Lin D X, Shi T T, Xie H P, Wan F, Ren X X, Liu K, Zhao Y, Ke L L, Lin Y, Gao Y L, Xu X, Xie W G, Liu P Y, Yuan Y B 2021 Adv. Energy Mater. 11 2002552
Google Scholar
[3] Lan S G, Li W C, Wang S, Li J Z, Wang J, Wang H Z, Luo H M, Li D H 2018 Adv. Opt. Mater. 7 1801336
[4] Wei J H, Liao J F, Wang X D, Zhou L, Jiang Y, Kuang D B 2020 Matter 3 892
Google Scholar
[5] Zhou L, Xu Y F, Chen B X, Kuang D B, Su C Y 2018 Small 14 e1703762
Google Scholar
[6] Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541
Google Scholar
[7] 徐锦锃, 高辉, 陈国庆, 王可可, 胡金辉 2024 无机化学学报 40 405
Google Scholar
Xu J C, Gao H, Chen G Q, Wang K K, Hu J H 2024 Inorg. Chem. 40 405
Google Scholar
[8] Xia Z, Poeppelmeier K R 2017 Acc Chem. Res. 50 1222
Google Scholar
[9] Xia Z, Ma C, Molokeev M S, Liu Q, Rickert K, Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494
Google Scholar
[10] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630
Google Scholar
[11] Ji F X, Klarbring J, Wang F, Ning W H, Wang L Q, Yin C Y, Figueroa J S M, Christensen C K, Etter M, Ederth T, Sun L C, Simak S I, Abrikosov I A, Gao F 2020 Angew. Chem. Int. Edit. 59 15191
Google Scholar
[12] McClure E T, Ball M R, Windl W, Woodward P M 2016 Chem. Mater. 28 1348
Google Scholar
[13] Deng W, Deng Z Y, He J W, Wang M Z, Chen Z X, Wei S H, Feng H J 2017 Appl. Phys. Lett. 111 151602
Google Scholar
[14] Liu X, Niu G M, Jiang J T, Che L, Sui L Z, Wang X W, Zeng X Y, Wu G R, Yuan K J, Yang X M 2024 Laser Photonics Rev. 19 2401000
[15] Chen L Y, Jiang H J, Luo Z H, Liu G Q, Wu X H, Liu Y F, Sun P, Jiang J 2022 Mater. Adv. 3 4381
Google Scholar
[16] Li Q, Wang Y G, Pan W C, Yang W G, Zou B, Tang J, Quan Z W 2017 Angew. Chem. Int. Edit. 56 15969
Google Scholar
[17] 吴学仟, 王玲瑞, 袁亦方, 马良, 郭海中 2023 高压物理学报 37 21
Wu X Q, Wang L R, Yuan Y F, Ma L, Guo H Z 2023 High. Pressure. Phys. 37 21
[18] Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663
Google Scholar
[19] Jebnouni A, Alatawi Abdullah A, Bouzidi M, Alshammari Ahlam F, Aljaloud Amjad S, Alshammari Mona A F, Jebali M, Bechir Mohamed B 2025 Appl. Organomet. Chem. 39 e8000
Google Scholar
[20] Prescher C, Prakapenka V B 2015 High Pressure Res. 35 223
Google Scholar
[21] Li X X, Li W W, Xia M L, Liu C, Li N, Shi Z H, Xu Y S, Zhang X H 2022 Inorg. Chem. 61 5040
Google Scholar
[22] Ning W H, Gao F 2019 Adv. Mater. 31 e1900326
Google Scholar
[23] Sa R J, Wei Y C, Zha W Y, Liu D W 2020 Chem. Phys. Lett. 754 137538
Google Scholar
[24] Kong L P, Liu G, Gong J, Hu Q Y, Schaller R D, Dera P, Zhang D Z, Liu Z X, Yang W G, Zhu K, Tang Y Z, Wang C Y, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. USA 113 8910
Google Scholar
[25] Wang L R, Ou T J, Wang K, Xiao G J, Gao C X, Zou B 2017 Appl. Phys. Lett. 111 233901
Google Scholar
计量
- 文章访问数: 963
- PDF下载量: 12
- 被引次数: 0