搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能

郭宏伟 贺苗苗 姜云 李会 张金彦 连敏 崔田

引用本文:
Citation:

高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能

郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田

Structural and optoelectronic properties of lead-free double perovskite Cs2AgInCl2 under pigh pressure

GUO Hongwei, HE Miaomiao, JIANG Yun, LI Hui, ZHANG Jinyan, LIAN Min, CUI Tian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 环境友好的无机无铅双钙钛矿材料因具有由于优异的光电特性, 被认为是铅基钙钛矿材料的良好替代品之一. 本文采用水热法制备了一种非铅双钙钛矿材料Cs2AgInCl6, 利用金刚石对顶砧装置进行高压实验, 研究了室温下压力诱导Cs2AgInCl6的结构变化以及压力对其光电流、光学带隙的调控, 实验最高压力为41.1 GPa. 原位高压拉曼及同步辐射X射线衍射实验结果显示, 8.9 GPa时Cs2AgInCl6 发生了从立方相(Fm-3m)到四方相(I4/m)的相变. 原位高压吸收光谱显示带隙在相变前后随压力呈现反向变化趋势. 当压力增大到实验最高点时, 光电流值为常压值的2倍, 且卸压后依然保持. 本研究揭示了压力调控下的无铅双钙钛矿材料结构-性能关联机制, 为通过晶体工程与应变调控优化光电性能提供了可行策略. 压缩后功能的有效保留凸显了此类材料在非易失性压力可调谐光电探测器中的应用潜力.
    Environmentally friendly lead-free double perovskite materials have emerged as promising alternatives to lead-based perovskites due to their excellent optoelectronic properties and improved stability. In this study, a highly crystalline lead-free double perovskite, Cs2AgInCl6, is synthesized via a mild hydrothermal method, and its pressure-induced structural evolution and optoelectronic regulation up to 41.1 GPa are systematically investigated at room temperature by using diamond anvil cell (DAC) technology combined with multiple in-situ characterization methods. High-pressure synchrotron X-ray diffraction reveals a structural phase transition from the cubic phase (Fm-3m) to the tetragonal phase (I4/m) at 8.9 GPa. In-situ Raman spectroscopy further confirms this transition through the splitting of characteristic phonon modes, indicating enhanced structural anisotropy. Pressure-dependent optical absorption spectra show a distinct reversal in the trend of bandgap evolution during the phase transition, reflecting a strong coupling between the crystal structure and the electronic band structure. Remarkably, the photocurrent exhibits sustained pressure enhancement behavior, reaching twice the ambient pressure value at 41.1 GPa and the maintaining enhanced performance even after the pressure has been released completely, indicating that the structural changes caused by pressure are stable. These findings provide fundamental insights into the pressure-mediated structure-property relationships in lead-free double perovskites and offer viable strategies for optimizing optoelectronic performance through crystal engineering and strain modulation. The retained post-compression functions highlight their potential applications in non-volatile pressure-tunable photodetectors.
  • 图 1  (a) Cs2AgInCl6在常压条件下的 XRD 光谱; (b) Cs2AgInCl6的立方相晶体结构图

    Fig. 1.  (a) The X-ray diffraction spectrum of Cs2AgInCl6 under atmospheric pressure; (b) the crystal structure diagram of the cubic phase of Cs2AgInCl6.

    图 2  (a) 常压下Cs2AgInCl6在不同光波长下的光响应图谱; (b) 光波长为450 nm, Cs2AgInCl6在不同压力下的光响应图谱; (c)—(e) Cs2AgInCl6的光电流密度(JPH), 光响应强度(R)和外部量子效率(EQE)随压力的变化趋势; (f) I-V曲线随压力的变化趋势

    Fig. 2.  (a) The optical response spectra of Cs2AgInCl6 under different light wavelengths at atmospheric pressure; (b) the optical response spectra of Cs2AgInCl6 under different pressures when the light wavelength is 450 nm; (c)–(e) the variation trends of the photocurrent density (JPH), optical response intensity (R) and external quantum efficiency (EQE) of Cs2AgInCl6 with pressure; (f) the variation trend of the I-V curve with pressure.

    图 3  (a) Cs2AgInCl6的压致变色光学显微图; (b) Cs2AgInCl6的高压紫外-可见光吸收光谱; (c) 高压下Cs2AgInCl6晶体的带隙演化

    Fig. 3.  (a) The pressure-induced coloration optical micrographs of Cs2AgInCl6; (b) the high-pressure ultraviolet-visible light absorption spectrum of Cs2AgInCl6; (c) the band-gap evolution of Cs2AgInCl6 crystals under high pressure.

    图 4  (a) Cs2AgInCl6的高压拉曼图谱; (b) Cs2AgInCl6的拉曼振动峰随压力变化趋势

    Fig. 4.  (a) The high-pressure Raman spectra of Cs2AgInCl6; (b) the variation trend of the Raman vibration peaks of Cs2AgInCl6 with pressure.

    图 5  (a) Cs2AgInCl6的高压XRD图谱; (b) Cs2AgInCl6在2.1 GPa时的XRD图谱, (插图给出Cs2AgInCl6的立方相ab面晶体结构图); (c) Cs2AgInCl6在9.7 GPa时的XRD图谱(插图给出Cs2AgInCl6的四方相ab面晶体结构图); (d)—(f) Cs2AgInCl6的晶格参数(d)、晶胞体积(e)、键长(f)与压力的函数关系

    Fig. 5.  (a) The high-pressure XRD pattern of Cs2AgInCl6; (b) the XRD pattern of Cs2AgInCl6 at 2.1 GPa (the crystal structure diagram of the ab plane of the cubic phase of Cs2AgInCl6 is shown in the inset); (c) the XRD pattern of Cs2AgInCl6 at 9.7 GPa (the crystal structure diagram of the ab plane of the tetragonal phase of Cs2AgInCl6 is shown in the inset); (d)–(f) the relationship between the lattice parameters (d), cell volume (e), bond lengths (f) of Cs2AgInCl6 and pressure.

    表 1  Cs2AgInCl6常压下的结构信息

    Table 1.  Structural information of Cs2AgInCl6 under normal pressure.

    Compounds Cs2AgInCl6
    Crystal Cubic
    Space group Fm-3m(225)
    a, b, c 10.48713(3)
    V3 1157.372
    Atoms Wyckoff (x y z)
    Cs 8c(0.25 0.25 0.25)
    Ag 4b(0 0 0)
    In 4a(0 0 0)
    Cl 24e(0.24 0 0)
    Residualsa/%
    Rwp and Rp as defined in GSAS.
    Rwp: 8.76%
    Rp: 8.12%
    下载: 导出CSV
  • [1]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [2]

    Lin D X, Shi T T, Xie H P, Wan F, Ren X X, Liu K, Zhao Y, Ke L L, Lin Y, Gao Y L, Xu X, Xie W G, Liu P Y, Yuan Y B 2021 Adv. Energy Mater. 11 2002552Google Scholar

    [3]

    Lan S G, Li W C, Wang S, Li J Z, Wang J, Wang H Z, Luo H M, Li D H 2018 Adv. Opt. Mater. 7 1801336

    [4]

    Wei J H, Liao J F, Wang X D, Zhou L, Jiang Y, Kuang D B 2020 Matter 3 892Google Scholar

    [5]

    Zhou L, Xu Y F, Chen B X, Kuang D B, Su C Y 2018 Small 14 e1703762Google Scholar

    [6]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [7]

    徐锦锃, 高辉, 陈国庆, 王可可, 胡金辉 2024 无机化学学报 40 405Google Scholar

    Xu J C, Gao H, Chen G Q, Wang K K, Hu J H 2024 Inorg. Chem. 40 405Google Scholar

    [8]

    Xia Z, Poeppelmeier K R 2017 Acc Chem. Res. 50 1222Google Scholar

    [9]

    Xia Z, Ma C, Molokeev M S, Liu Q, Rickert K, Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494Google Scholar

    [10]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [11]

    Ji F X, Klarbring J, Wang F, Ning W H, Wang L Q, Yin C Y, Figueroa J S M, Christensen C K, Etter M, Ederth T, Sun L C, Simak S I, Abrikosov I A, Gao F 2020 Angew. Chem. Int. Edit. 59 15191Google Scholar

    [12]

    McClure E T, Ball M R, Windl W, Woodward P M 2016 Chem. Mater. 28 1348Google Scholar

    [13]

    Deng W, Deng Z Y, He J W, Wang M Z, Chen Z X, Wei S H, Feng H J 2017 Appl. Phys. Lett. 111 151602Google Scholar

    [14]

    Liu X, Niu G M, Jiang J T, Che L, Sui L Z, Wang X W, Zeng X Y, Wu G R, Yuan K J, Yang X M 2024 Laser Photonics Rev. 19 2401000

    [15]

    Chen L Y, Jiang H J, Luo Z H, Liu G Q, Wu X H, Liu Y F, Sun P, Jiang J 2022 Mater. Adv. 3 4381Google Scholar

    [16]

    Li Q, Wang Y G, Pan W C, Yang W G, Zou B, Tang J, Quan Z W 2017 Angew. Chem. Int. Edit. 56 15969Google Scholar

    [17]

    吴学仟, 王玲瑞, 袁亦方, 马良, 郭海中 2023 高压物理学报 37 21

    Wu X Q, Wang L R, Yuan Y F, Ma L, Guo H Z 2023 High. Pressure. Phys. 37 21

    [18]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663Google Scholar

    [19]

    Jebnouni A, Alatawi Abdullah A, Bouzidi M, Alshammari Ahlam F, Aljaloud Amjad S, Alshammari Mona A F, Jebali M, Bechir Mohamed B 2025 Appl. Organomet. Chem. 39 e8000Google Scholar

    [20]

    Prescher C, Prakapenka V B 2015 High Pressure Res. 35 223Google Scholar

    [21]

    Li X X, Li W W, Xia M L, Liu C, Li N, Shi Z H, Xu Y S, Zhang X H 2022 Inorg. Chem. 61 5040Google Scholar

    [22]

    Ning W H, Gao F 2019 Adv. Mater. 31 e1900326Google Scholar

    [23]

    Sa R J, Wei Y C, Zha W Y, Liu D W 2020 Chem. Phys. Lett. 754 137538Google Scholar

    [24]

    Kong L P, Liu G, Gong J, Hu Q Y, Schaller R D, Dera P, Zhang D Z, Liu Z X, Yang W G, Zhu K, Tang Y Z, Wang C Y, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. USA 113 8910Google Scholar

    [25]

    Wang L R, Ou T J, Wang K, Xiao G J, Gao C X, Zou B 2017 Appl. Phys. Lett. 111 233901Google Scholar

  • [1] 姚亮, 芦光辉, 杜杰, 刘永昌, 郗学奎, 王文洪. Heusler合金Co2FeAlxSi1–x跨尺度结构有序度调控及其对磁致伸缩性能的影响. 物理学报, doi: 10.7498/aps.74.20250358
    [2] 程鹏, 叶婷婷, 潘孝美, 薛二巧, 姚德元, 丁俊峰. 压力调控材料光电响应特性研究进展. 物理学报, doi: 10.7498/aps.74.20250912
    [3] 张竺立, 张凡, 王凯雷, 李超, 王锦涛. Fe掺杂对二维CuI电子结构及光学性质的影响. 物理学报, doi: 10.7498/aps.74.20241325
    [4] 闫晓丽, 冯振豹, 于蓝, 刘才龙. 高压下HfS2的光电性质. 物理学报, doi: 10.7498/aps.74.20250893
    [5] 胡宇霄, 李海鹏, 仇康. 应变调控反钙钛矿型Li3OCl电子结构和光学性质. 物理学报, doi: 10.7498/aps.74.20250588
    [6] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质. 物理学报, doi: 10.7498/aps.73.20231147
    [7] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, doi: 10.7498/aps.71.20220053
    [8] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220544
    [9] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, doi: 10.7498/aps.70.20201387
    [10] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, doi: 10.7498/aps.70.20210134
    [11] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, doi: 10.7498/aps.69.20200289
    [12] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, doi: 10.7498/aps.68.20190204
    [13] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展. 物理学报, doi: 10.7498/aps.67.20181319
    [14] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, doi: 10.7498/aps.66.037401
    [15] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087103
    [16] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, doi: 10.7498/aps.64.067102
    [17] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, doi: 10.7498/aps.64.227802
    [18] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [19] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.107101
    [20] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, doi: 10.7498/aps.55.5172
计量
  • 文章访问数:  963
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-11
  • 修回日期:  2025-06-06
  • 上网日期:  2025-07-15

/

返回文章
返回