搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于晶体相场模型的石墨烯位错动力学行为研究

王慧 甄乐怡 武白羽 周文权

引用本文:
Citation:

基于晶体相场模型的石墨烯位错动力学行为研究

王慧, 甄乐怡, 武白羽, 周文权

Dynamical behavior of graphene dislocations based on crystal phase field model

WANG Hui, ZHEN Leyi, WU Baiyu, ZHOU Wenquan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 石墨烯晶界结构的演化规律及其位错运动机制的研究对理解石墨烯的塑性变形行为具有重要意义, 目前对于在非机械作用下石墨烯晶界的动力学行为已得到广泛研究, 但由于已有实验条件和模拟方法在时间和空间尺度方面的限制, 关于机械拉伸载荷作用下石墨烯位错动态演化过程及塑性变形问题仍知之甚少. 本文基于晶体相场模型, 研究了在单轴拉伸载荷作用下石墨烯晶界环的动力学演化过程. 模拟研究结果表明, 当外加应变低于临界值时, 石墨烯体系处于弹性响应阶段, 5|7位错核心区域的应变振幅随着外加载荷的增大而减小; 而当应变达到临界值时, 体系发生弹-塑性转变, 晶界环处5|7位错通过C—C键旋转, 转变为5|7|7|5位错, 此时位错核心区域的应变振幅增大, 标志着体系塑性变形的启动; 当应变超过临界值后, 体系进入塑性变形阶段, 晶界环呈现出3种特征性演化行为: 5|7位错与5|7|7|5位错之间发生缺陷结构交替转变; 位错经历“钉扎$\rightleftharpoons $攀移/滑移混合运动”的反复演化过程; 位错保持“钉扎”状态直至位错处裂纹形核并发生韧性断裂. 本工作为深入理解石墨烯塑性变形行为提供了重要理论基础.
    The study of the evolution of grain boundary (GB) structures and the mechanisms of dislocation motion in graphene is of significance in uncovering the physical essence of plastic deformation behavior of graphene. Currently, the dynamic behavior of graphene GBs under non-mechanical loads has been extensively investigated. However, due to the inherent limitations of existing experimental conditions and simulation methods in terms of temporal and spatial scales, the dynamic evolution process of dislocations in graphene under mechanical tensile loads and their intrinsic correlation with plastic deformation are still poorly understood. In this work, a phase-field crystal (PFC) model based on classical density functional theory (DFT) is adopted. Combining periodic density field variables, the model achieves cross-scale coupling between microscopic crystal structures and macroscopic diffusion time scales, enabling efficient simulation of long-term evolution processes. It is particularly suitable for characterizing microscopic mechanisms involving complex defect evolution in graphene, such as dislocation glide and climb, and GB migration.In this work, the complete deformation process of a graphene bicrystal system containing a GB loop under uniaxial tensile loading is simulated on an atomic scale, including elastic response, elastic-plastic transition, plastic deformation, and fracture. The transformation characteristics of 5|7 dislocation core structures and the topological evolution of the GB loop within the system are systematically investigated. The simulation results reveal that when the applied strain is below a critical value, the system exhibits the elastic response, characterized by a linear relationship between the average response strain and the applied strain. As the strain reaches the critical value, the 5|7 dislocations at the GB loop undergo transformation into 5|7|7|5 dislocations through C–C bond rotation. This transition is accompanied by a significant increase in the strain amplitude at the dislocation cores, marking the onset of plastic deformation. Beyond the critical strain, the system thus enters the plastic deformation stage, during which the GB loop exhibits three different types of evolution behaviors: 1) alternating transformations between 5|7 and 5|7|7|5 dislocation structures driven by repeated C—C bond rotation; 2) a cyclic evolution of dislocations involving “pinning $\rightleftharpoons $ mixed climb/glide motion”, accompanied by energy fluctuations described as “energy storage-dissipation-restorage”; 3) dislocations remaining in a “pinned” state until stress concentration in their core regions initiates transgranular cracking, ultimately leading to ductile fracture of the system.This study provides important theoretical insights into the physical mechanisms underlying the plastic deformation behavior of graphene.
  • 图 1  含晶界环的石墨烯双晶体系结构 (a) 石墨烯双晶体系对应的晶格取向分布云图, 插图为晶界环处5|7位错的排列分布图; (b) 图(a)中矩形区域放大图; (c) 图(b)中5|7位错对应的原子结构图及其Burgers矢量(红色箭头所示)

    Fig. 1.  Structure of graphene bicrystal system containing a grain boundary (GB) loop: (a) Illustration of lattice orientation in the graphene bicrystal system, with the inset showing the arrangement of 5|7 dislocations at the GB loop; (b) magnified view of the rectangular region in (a); (c) atomic structure diagram of the 5|7 dislocation in panel (b) and its Burgers vector (indicated by the red arrow).

    图 2  双晶体系10的脆性断裂过程 (a)—(d) ${\varepsilon _{\text{e}}}$= 0.59%, 5.85%, 6.09%, 7.58%

    Fig. 2.  Brittle fracture process in bicrystal system 10: (a)—(d) ${\varepsilon _{\text{e}}}$= 0.59%, 5.85%, 6.09%, 7.58%.

    图 3  石墨烯双晶体系晶界环拓扑结构演化过程示意图, 其中(a)—(d) ${\varepsilon _{\text{e}}}$= 0.59%, 3.25%, 3.72%, 4.19%; (e) 12组不同晶体取向石墨烯双晶体系的平均响应应变${\bar \varepsilon _{yy}}$-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 3.  Schematic diagram of topological structure evolution of the GB loop in the graphene bicrystal systems: (a)—(d) ${\varepsilon _{\text{e}}}$= 0.59%, 3.25%, 3.72%, 4.19%. (e) Response curves of average strain versus applied strain for twelve graphene bicrystal systems with different crystallographic orientations.

    图 4  双晶体系7中晶界环Ⅰ号位错($\alpha $= 29.5°)在应变作用下的弹性响应过程 (a) 5|7位错微观结构图; (b) 图(a)的局部应变分布云图及压缩应变(CS)值和拉伸应变(TS)值; (c) 5|7位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 4.  Bicrystal system 7, elastic response process of Dislocation Ⅰ ($\alpha $ = 29.5°) in the GB loop under strain: (a) Microstructure of the 5|7 dislocation; (b) strain distribution contour of panel (a) with values of compressive strain (CS) and tensile strain (TS); (c) response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) versus applied strain ${\varepsilon _{\text{e}}}$ at the 5|7 dislocation core.

    图 5  在弹性响应阶段双晶体系晶界环处5|7位错应变振幅的变化 (a) Ⅰ号位错; (2) Ⅱ号位错

    Fig. 5.  Variation in strain amplitude at 5|7 dislocations within the grain boundary loop during elastic response stage: (a) Dislocation Ⅰ; (b) dislocation Ⅱ.

    图 6  双晶体系10, 晶界环Ⅱ号位错($\alpha $= 45.3°)的缺陷结构转变的微观结构图, 其中(a) ${\varepsilon _{\text{e}}}$= 3.22%, (b) ${\varepsilon _{\text{e}}}$= 3.28%; (c) 弹-塑性转变过程的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 6.  Elastoplastic transition in bicrystal system 10, microstructural evolution of defect structure transformation at dislocation Ⅱ ($\alpha $ = 45.3°) in the GB loop: (a) ${\varepsilon _{\text{e}}}$ = 3.22%; (b) ${\varepsilon _{\text{e}}}$ = 3.28%. (c) Response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) versus applied strain ${\varepsilon _{\text{e}}}$.

    图 7  不同温度下, 石墨烯双晶体系10微观结构转变图, 其中(a), (b) Ⅰ号位错; (c), (d) Ⅱ号位错; (e) 临界应变随温度变化的柱状图

    Fig. 7.  Temperature-dependent microstructural transformation in graphene bicrystal system 10: (a), (b) Dislocation Ⅰ; (c), (d) dislocation Ⅱ. (e) Bar chart of critical strain versus temperature.

    图 8  双晶体系12, 晶界环Ⅰ号位错($\alpha $ = 4.5°)在应变作用下的微观结构演化图与应变响应过程 (a)—(e) 位错缺陷结构微观演化图及其所对应的位错核心区域的应变等值线图(${\varepsilon _{\text{e}}}$ = 3.72%, 3.75%, 3.83%, 3.86%, 4.01%); (f)—(j)为对应的演化过程示意图; (k) Ⅰ号位错的局部能量密度均值-外加应变曲线; (l) 位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 8.  Bicrystal system 12, microstructural evolution and strain response of Dislocation I ($\alpha $ = 4.5°) in the GB loop under applied strain: (a)—(e) Microscopic evolution of dislocation defect structures and corresponding strain contour plots at the dislocation core region (${\varepsilon _{\text{e}}}$ = 3.72%, 3.75%, 3.83%, 3.86%, 4.01%); (f)—(j) schematic diagrams of the corresponding evolutionary stages; (k) curve of average local energy density versus applied strain for Dislocation I; (l) response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    图 9  双晶体系4, 晶界环Ⅱ号位错($\alpha $ = 15.3°)在应变作用下的微观结构演化图与应变响应过程 (a)—(f) ${\varepsilon _{\text{e}}}$ = 3.16%, 3.19%, 3.89%, 3.92%, 3.98%, 4.01%; (g) Ⅱ号位错的局部能量密度均值-外加应变曲线; (h) 位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 9.  Bicrystal system 4, microstructural evolution and strain response of dislocation Ⅱ ($\alpha $ = 15.3°) in the GB loop under applied strain: (a)—(f) ${\varepsilon _{\text{e}}}$ = 3.16%, 3.19%, 3.89%, 3.92%, 3.98%, 4.01%; (g) curve of average local energy density versus applied strain for Dislocation Ⅱ; (h) response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    图 10  双晶体系4, 晶界环Ⅰ号位错($\alpha $ = 44.5°)在应变作用下的微观结构演化图与应变响应过程 (a)—(d) ${\varepsilon _{\text{e}}}$ = 3.51%, 3.54%, 3.60%, 4.19%; (e) 所对应的位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 10.  Bicrystal system 4, microstructural evolution and strain response of Dislocation I ($\alpha $= 44.5°) in the GB loop under applied strain: (a)—(d) ${\varepsilon _{\text{e}}}$= 3.51%, 3.54%, 3.60%, 4.19%; (e) corresponding response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    图 11  双晶体系3, 晶界环Ⅲ号位错($\alpha $ = 70.7°)在应变作用下的微观结构图与应变响应过程 (a)—(c) ${\varepsilon _{\text{e}}}$ = 0.59%, 1.76%, 2.93%; (d) 所对应的位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Fig. 11.  Bicrystal system 3, microstructural evolution and strain response of Dislocation III ($\alpha $ = 70.7°) in the GB loop under applied strain: (a)—(c) ${\varepsilon _{\text{e}}}$ = 0.59%, 1.76%, 2.93%; (d) corresponding response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    表 1  12组石墨烯双晶体系的参数

    Table 1.  Parameters of the twelve graphene bicrystal systems.

    体系
    编号
    晶粒
    取向角
    体系旋
    转角度
    $\theta $/(°)
    bY轴夹角$\alpha $/(°)
    ${\varphi _1}$/(°)${\varphi _2}$/(°)Ⅰ号位错
    bY
    夹角
    Ⅱ号位错
    bY
    夹角
    Ⅲ号位错
    bY
    夹角
    11.1–1.1059.50.360.7
    26.13.9554.55.365.7
    311.18.91049.510.370.7
    416.113.91544.515.375.7
    521.118.92039.520.380.7
    626.123.92534.525.385.7
    731.128.93029.530.390.7
    836.133.93524.535.395.7
    941.138.94019.540.3100.7
    1046.143.94514.545.3105.7
    1151.148.9509.550.3110.7
    1256.153.9554.555.3115.7
    下载: 导出CSV
  • [1]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci. : Adv. Mater. Devices 5 10Google Scholar

    [2]

    Slepchenkov M M, Glukhova O E 2019 Coatings 9 74Google Scholar

    [3]

    Lherbier A, Dubois S M M, Declerck X, Niquet Y M, Roche S, Charlier J C 2012 Phys. Rev. B 86 75402Google Scholar

    [4]

    Mortazavi B, Ahzi S 2013 Carbon 63 460Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Hansora D P, Shimpi N G, Mishra S 2015 JOM 67 2855Google Scholar

    [7]

    Dervishi E, Ji Z, Htoon H, Sykora M, Doorn S K 2019 Nanoscale 11 16571Google Scholar

    [8]

    Wong C H, Vijayaraghavan V 2012 Materials Science and Engineering: A 556 420Google Scholar

    [9]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z S 2014 Carbon 75 124Google Scholar

    [10]

    Fu Y, Ragab T, Basaran C 2016 Comput. Mater. Sci. 124 142Google Scholar

    [11]

    Zhang X L, Zhang J L, Yang M 2020 RSC Adv. 10 19254Google Scholar

    [12]

    Gamboa-Suárez A, Seuret-Hernández H Y, Leyssale J M 2022 Carbon Trends 9 100197Google Scholar

    [13]

    Zandiatashbar A, Lee G H, An S J, Lee S, Mathew N, Terrones M, Hayashi T, Picu C R, Hone J, Koratkar N 2014 Nat. Commun. 5 3186Google Scholar

    [14]

    Cottrell A H, Bilby B A 1949 Proc. Phys. Soc. London, Sect. A 62 49

    [15]

    Nabarro F R N 1952 Adv. Phys. 1 269Google Scholar

    [16]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [17]

    Warner J H, Margine E R, Mukai M, Robertson A W, Giustino F, Kirkland A I 2012 Science 337 209Google Scholar

    [18]

    Gong C, Robertson A W, He K, Lee G D, Yoon E, Allen C S, Kirkland A I, Warner J H 2015 ACS Nano 9 10066Google Scholar

    [19]

    Gong C, He K, Chen Q, Robertson A W, Warner J H 2016 ACS Nano 10 9165Google Scholar

    [20]

    Yang Z, Huang Y H, Ma F, Sun Y J, Xu K W, Chu P K 2015 Eur. Phys. J. B 88 135Google Scholar

    [21]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [22]

    Zhou W Q, Wang J C, Lin B, Wang Z J, Li J J, Huang Z F 2019 Carbon 153 242Google Scholar

    [23]

    高丰, 李欢庆, 宋卓, 赵宇宏 2024 物理学报 73 248101Google Scholar

    Gao F, Li H Q, Song Z, Zhao Y H 2024 Acta. Phys. Sin. 73 248101Google Scholar

    [24]

    Yang L, Liu J J, Lin Y W, Xu K, Cao X Z, Zhang Z S, Wu J Y 2021 Chem. Mater. 33 8758Google Scholar

    [25]

    Wu J Y, Gong H, Zhang Z S, He J Y, Ariza P, Ortiz M, Zhang Z L 2019 Appl. Mater. Today 15 34Google Scholar

    [26]

    Liu J, Šesták P, Zhang Z, Wu J 2022 Mater. Today Nano 20 100245Google Scholar

    [27]

    Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar

    [28]

    Li J Y, Ni B, Zhang T, Gao H J 2018 J. Mech. Phys. Solids 120 36Google Scholar

    [29]

    Qi Y, Krajewski P 2007 Acta Mater. 55 1555Google Scholar

    [30]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605Google Scholar

    [31]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [32]

    Swift J, Hohenberg P C 1977 Phys. Rev. A 15 319Google Scholar

    [33]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605

    [34]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 64107Google Scholar

    [35]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 45415Google Scholar

    [36]

    Singh S K, Neek-Amal M, Peeters F M 2013 Phys. Rev. B 87 134103Google Scholar

    [37]

    Stefanovic P, Haataja M, Provatas N 2006 Phys. Rev. Lett. 96 225504Google Scholar

    [38]

    Tegze G, Bansel G, Tóth G I, Pusztai T, Fan Z, Gránásy L 2009 J. Comput. Phys. 228 1612Google Scholar

    [39]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 46107Google Scholar

    [40]

    Heinonen V, Achim C V, Ala-Nissila T 2016 Phys. Rev. E 93 53003Google Scholar

    [41]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University

    [42]

    Zhou W Q, Wang J C, Wang Z J, Huang Z F 2019 Phys. Rev. E 99 013302Google Scholar

    [43]

    Taha D, Mkhonta S K, Elder K R, Huang Z F 2017 Phys. Rev. Lett. 118 255501Google Scholar

    [44]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [45]

    Wu J T, Wei Y J 2013 J. Mech. Phys. Solids 61 1421Google Scholar

    [46]

    Liu T H, Pao C W, Chang C C 2012 Carbon 50 3465Google Scholar

    [47]

    Li L, Reich S, Robertson J 2005 Phys. Rev. B 72 184109Google Scholar

    [48]

    Kim Y, Ihm J, Yoon E, Lee G D 2011 Phys. Rev. B 84 75445Google Scholar

    [49]

    Blaschke D N, Szajewski B A 2018 Philos. Mag. 98 2397Google Scholar

    [50]

    Bonilla L L, Carpio A, Gong C, Warner J H 2015 Phys. Rev. B 92 155417Google Scholar

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, doi: 10.7498/aps.73.20231784
    [2] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, doi: 10.7498/aps.73.20241368
    [3] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, doi: 10.7498/aps.71.20211981
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, doi: 10.7498/aps.70.20210122
    [5] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, doi: 10.7498/aps.69.20200750
    [6] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, doi: 10.7498/aps.68.20190859
    [7] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, doi: 10.7498/aps.68.20190279
    [8] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [9] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, doi: 10.7498/aps.66.058101
    [10] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, doi: 10.7498/aps.66.216101
    [11] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, doi: 10.7498/aps.65.098101
    [12] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究. 物理学报, doi: 10.7498/aps.64.028102
    [13] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟. 物理学报, doi: 10.7498/aps.64.106104
    [14] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, doi: 10.7498/aps.64.106105
    [15] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, doi: 10.7498/aps.63.248103
    [16] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, doi: 10.7498/aps.63.176801
    [17] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, doi: 10.7498/aps.63.057803
    [18] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响. 物理学报, doi: 10.7498/aps.62.108104
    [19] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, doi: 10.7498/aps.61.038702
    [20] 张琪, 王锦程, 张亚丛, 杨根仓. 多晶凝固及后续调幅分解过程的晶体相场法模拟. 物理学报, doi: 10.7498/aps.60.088104
计量
  • 文章访问数:  210
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-09-05
  • 上网日期:  2025-09-24

/

返回文章
返回