搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧空位调控的HfOX忆阻器稳定性研究*

朱媛媛 杨梓怡 杨淑宁 张云飞 张苗 王鑫 王红军 徐静

引用本文:
Citation:

基于氧空位调控的HfOX忆阻器稳定性研究*

朱媛媛, 杨梓怡, 杨淑宁, 张云飞, 张苗, 王鑫, 王红军, 徐静

Stability of HfOX memristors based on oxygen vacancy regulation

ZHU Yuanyuan, YANG Ziyi, YANG Shuning, ZHANG Yunfei, ZHANG Miao, WANG Xin, WANG Hongjun, XU Jing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • HfOX忆阻器因其低操作电压、良好的耐受性及循环特性等优异性能, 使其成为下一代非易失性存储器最有前景的候选者之一. 然而, 由于HfOX薄膜内氧空位导电细丝的形成和断裂的随机性, 器件阈值电压分布较为分散, 整体稳定性较差, 因此, 通过调控氧空位来提高HfOX器件的稳定性具有重要的研究意义. 本研究采用磁控溅射法制备了不同氩氧比的三组器件, 均表现出双极性阻变特性. 在三种不同氩氧比的W/HfOX/Pt 器件中, 氩氧比为45∶5的器件展现出最优的综合性能: I-V循环超过200次、开关比~103、在104 s内具有优异的数据保持特性且阈值电压分布集中, 表明器件稳定性显著提高. 通过构建氧空位调控与导电细丝演变的物理模型, 揭示了氧空位浓度对阻变机理的影响机制. 本研究明确了氧空位的调控HfOX忆阻器性能的关键作用, 为发展高性能、高可靠性的阻变存储器提供了有效途径.
    HfOX memristors have emerged as one of the most promising candidates for next-generation non-volatile memory due to their low operating voltage, excellent endurance, and cycling characteristics. However, the randomness in the formation and rupture of oxygen vacancy conductive filaments within HfOX thin films leads to a relatively dispersed threshold voltage distribution and poor stability. Therefore, improving the stability of HfOX devices by modulating oxygen vacancies is of significant research importance. In this study, three groups of W/HfOX/Pt devices are prepared using magnetron sputtering with argon-to-oxygen ratios of 30∶20, 40∶10 and 45∶5, respectively. XPS results indicate that the 45∶5 device has the highest oxygen vacancy concentration (25.59%). All of three groups exhibit bipolar resistive switching behavior. Of the three W/HfOX/Pt devices, the device with the argon-to-oxygen ratio of 45:5 demonstrates the best overall performance: over 200 I-V cycles, a switching ratio of ~103, excellent data retention within 104 s, and a concentrated threshold voltage distribution. Analysis of the conduction mechanisms reveals that the device follows a space-charge-limited current (SCLC) mechanism in the high-resistance state and exhibits Ohmic conduction behavior in the low-resistance state. In the initial state, there is a high density of oxygen vacancies near the nucleation region of the conductive filament, which can shorten the effective migration path of oxygen vacancies. Under an applied electric field, negatively charged oxygen ions migrate toward the top electrode, while oxygen vacancies gradually accumulate from the bottom electrode to the top electrode, leading to the formation of continuous conductive filaments. A higher oxygen vacancy concentration facilitates the development of robust and structurally more stable conductive filaments, thereby enhancing the uniformity of resistive switching and device reliability. This study reveals the critical role of oxygen vacancy modulation in the performance of HfOX memristors and provides an effective pathway for developing high-performance and highly reliable resistive random-access memory.
  • 图 1  W/HfOX/Pt忆阻器结构示意图

    Fig. 1.  Schematic diagram of the W/HfOX/Pt memristor structure

    图 2  HfOX薄膜的XRD图谱

    Fig. 2.  XRD patterns of the HfOX thin films.

    图 3  HfOX薄膜的SEM图像 (a) 表面图; (b) 截面图

    Fig. 3.  SEM images of the HfOX thin films: (a) Surface diagrams; (b) cross-sectional view.

    图 4  HfOX薄膜的XPS能谱 (a)—(c) 氩氧比为(a) 30∶20, (b) 40∶10, (c) 45∶5条件下Hf 4f核心能级谱图; (d)—(f) 氩氧比为(d) 30∶20, (e) 40∶10, (f) 45∶5条件下O 1s核心能级谱图

    Fig. 4.  XPS spectra of the HfOX thin films: (a)–(c) Hf 4f core level spectrum with argon-to-oxygen ratios of (a) 30∶20, (b) 40∶10, (c) 45∶5; (d)–(f) O 1s core level spectrum with argon-to-oxygen ratios of (d) 30∶20, (e) 40∶10, (f) 45∶5.

    图 5  W/HfOX/Pt忆阻器的I-V特性曲线 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 5.  I-V characteristic curves of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 6  W/HfOX/Pt忆阻器在不同限制电流ICC下的I-V特性 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 6.  I-V characteristics of the W/HfOX/Pt memristor under different current compliance values: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 7  W/HfOX/Pt忆阻器的阈值电压统计分布 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 7.  Statistical distribution of threshold voltage of W/HfOX/Pt memristors: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 8  W/HfOX/Pt忆阻器循环耐受性 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 8.  Cycling endurance of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 9  W/HfOX/Pt忆阻器的数据保持特性 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 9.  Data retention characteristics of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 10  W/HfOX/Pt忆阻器的脉冲响应时间(图中黑色曲线为设置电压, 红色曲线为器件在电脉冲下测试的电流值) (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 10.  Pulse response time of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 11  W/HfOX/Pt忆阻器连续周期的脉冲循环 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 11.  Pulse cycles of the W/HfOX/Pt memristor in continuous periods: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 12  W/HfOX/Pt忆阻器的导电拟合机制 (a) 30∶20器件正扫描区I-V曲线的双对数拟合结果; (b) 40∶10器件正扫描区I-V曲线的双对数拟合结果; (c) 45∶5器件正扫描区I-V曲线的双对数拟合结果

    Fig. 12.  Conductive fitting mechanism of the W/HfOX/Pt memristor: (a) Double logarithmic fitting results of the I-V curve in the positive scanning region of the device with a ratio of 30∶20; (b) double logarithmic fitting results of the I-V curve in the positive scanning region of the device with a ratio of 40∶10; (c) double logarithmic fitting results of the I-V curve in the positive scanning region of the device with a ratio of 45∶5.

    图 13  W/HfOX/Pt忆阻器阻变机制示意图 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Fig. 13.  Schematic diagrams of the resistive switching mechanism of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    表 1  HfOX忆阻器与各类忆阻器电学性能的对比

    Table 1.  . Comparison of electrical performance between HfOX memristors and various types of memristors.

    RRAM structure VSet/VReset Endurance Retention time ON/OFF ratio Response time Ref.
    Ti/hBN/Au 1.73/–0.85 V 200 >50 120/120 ps [18]
    Cu/A1 OX/A1 2.11/–1.1 V 50 ~104 ~105 [48]
    Al/WOX/ITO 0.65/–3.1 V 100 ~103 [49]
    Ti/ZrO2/Pt 2.5/–2 V 100 >104 >10 250/250 ns [50]
    Pt/HfO2/TiO2/ITO 0.7/–0.5 V 100 ~104 >10.6 [51]
    Ag/BP/HfO2/Pt 1.4/–0.54 V >100 ~102 [52]
    W/HfOX/Pt(45∶5) 0.91/–1.84 V 200 >104 ~103 70/130 μs This work
    下载: 导出CSV
  • [1]

    Tang K, Wang Y, Gong C H, Yin C J, Zhang M, Wang X F, Xiong J 2022 Adv. Electron. Mater. 8 2101099Google Scholar

    [2]

    Cao D W, Yan Y, Wang M N, Luo G L, Zhao J R, Zhi J K, Xia C X, Liu Y F 2024 Adv. Funct. Mater. 34 2314649Google Scholar

    [3]

    Zhang Y, Mao G Q, Zhao X L, Li Y, Zhang M Y, Wu Z H, Wu W, Sun H J, Guo Y Z, Wang L H, Zhang X M, Liu Q, Lv H B, Xue K H, Xu G W, Miao X S, Long S B, Liu M 2021 Nat. Commun. 12 7232Google Scholar

    [4]

    Zhang G B, Fan X M, Wang J, Wang Z J, Zhang Z J, Li P T, Ma Y T, Huang K J, Yu B, Wan Q, Miao X S, Zhang Y S 2025 Nat. Commun. 16 5759Google Scholar

    [5]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [6]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [7]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 eabj9979Google Scholar

    [8]

    Sun T Y, Qin Z B, Yu F T, Gao S, Wangyang P H, Tang X S, Li H O, Zhang F B, Xu Z M, Cai P, Jiang C S, Xue X G 2025 Appl. Surf. Sci. 679 161150Google Scholar

    [9]

    Wang L, Zhu H Y, Zuo Z, Wen D Z 2023 Adv. Electron. Mater. 9 2201032Google Scholar

    [10]

    Hota M K, Pazos S, Lanza M, Alshareef H N 2025 Mater. Sci. Eng. R Rep. 164 100983Google Scholar

    [11]

    龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文 2021 物理学报 70 197301Google Scholar

    Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301Google Scholar

    [12]

    Yang Y F, Xu M K, Jia S J, Wang B L, Xu L J, Wang X X, Liu H, Liu Y S, Guo Y Z, Wang L D, Duan S K, Liu K, Zhu M, Pei J, Duan W R, Liu D M, Li H L 2021 Nat. Commun. 12 6081Google Scholar

    [13]

    Chen L, He Z L, Li C D, Wen S P, Chen Y R 2020 Int. J. Bifurcat. Chaos 30 2050172Google Scholar

    [14]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L, Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127Google Scholar

    [15]

    张浩哲, 徐春燕, 南海燕, 肖少庆, 顾晓峰 2020 物理学报 69 246101Google Scholar

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101Google Scholar

    [16]

    Rusevich L L, Tyunina M, Kotomin E A, Nepomniashchaia N, Dejneka A 2021 Sci. Rep. 11 23341Google Scholar

    [17]

    Zhang B, Fan F, Xue W H, Liu G, Fu Y B, Zhuang X D, Xu X H, Gu J W, Li R W, Chen Y 2019 Nat. Commun. 10 736Google Scholar

    [18]

    Teja Nibhanupudi S S, Roy A, Veksler D, Coppin M, Matthews K C, Disiena M, Ansh, Singh J V, Gearba-Dolocan I R, Warner J, Kulkarni J P, Bersuker G, Banerjee S K 2024 Nat. Commun. 15 2334Google Scholar

    [19]

    Chen S C, Yang Z, Hartmann H, Besmehn A, Yang Y C, Valov I 2025 Nat. Commun. 16 2348Google Scholar

    [20]

    Hua P, Ning D 2014 Chin. Phys. Lett. 31 107303Google Scholar

    [21]

    Wang W X, Yin F F, Niu H S, Li Y, Kim E S, Kim N Y 2023 Nano Energy 106 108072Google Scholar

    [22]

    Wu M C, Chen J Y, Ting Y H, Huang C Y, Wu W W 2021 Nano Energy 82 105717Google Scholar

    [23]

    Tao Y, Wang Z Q, Xu H Y, Ding W T, Zhao X N, Lin Y, Liu Y C 2020 Nano Energy 71 104628Google Scholar

    [24]

    Bai J, Xie W W, Zhang W Q, Yin Z P, Wei S S, Qu D H, Li Y, Qin F W, Zhou D Y, Wang D J 2022 Appl. Surf. Sci. 600 154084Google Scholar

    [25]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575Google Scholar

    [26]

    王英, 黄慧香, 黄香林, 郭婷婷 2023 物理学报 72 197201Google Scholar

    Wang Y, Huang H X, Huang X L, Guo T T 2023 Acta Phys. Sin. 72 197201Google Scholar

    [27]

    Hah J, West M P, Athena F F, Hanus R, Vogel E M, Graham S 2022 J. Mater. Sci. 57 9299Google Scholar

    [28]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432Google Scholar

    [29]

    Wei T T, Lu Y Y, Zhang F, Tang J S, Gao B, Yu P, Qian H, Wu H Q 2023 Adv. Mater. 35 2209925Google Scholar

    [30]

    Zhou Q Z, Wang F, Zhao X Y, Hu K, Zhang Y J, Shan X, Lin X, Zhang Y P, Shan K, Zhang K L 2023 J. Intell. Fuzzy Syst. 45 5159

    [31]

    Ran H F, Ren Z J, Li J, Sun B, Wang T Y, Gu D S, Wang W H, Hu X F, Dong Z K, Song Q L, Wang L D, Duan S K, Zhou G D 2025 Adv. Funct. Mater. 35 2418113Google Scholar

    [32]

    Zhang Z Z, Wang F, Hu K, She Y, Song S N, Song Z T, Zhang K L 2021 Materials 14 3330Google Scholar

    [33]

    Yu S M, Chen H Y, Gao B, Kang J F, Wong H S P 2013 ACS Nano 7 2320Google Scholar

    [34]

    Wang C X, Mao G Q, Huang M H, Huang E M, Zhang Z C, Yuan J H, Cheng W M, Xue K H, Wang X S, Miao X S 2022 Adv. Sci. 9 2201446Google Scholar

    [35]

    Kaiser N, Vogel T, Zintler A, Petzold S, Arzumanov A, Piros E, Eilhardt R, Molina-Luna L, Alff L 2022 ACS Appl. Mater. Interfaces 14 1290Google Scholar

    [36]

    Jana B, Roy Chaudhuri A 2024 Chips 3 235Google Scholar

    [37]

    Dai Y H, Pan Z Y, Wang F F, Li X F 2016 AIP Adv. 6 085209Google Scholar

    [38]

    Zhang K N, Ren Y, Ganesh P, Cao Y 2022 Npj Comput. Mater. 8 76Google Scholar

    [39]

    Li S Q, Du J G, Lu J G, Lu B J, Zhuge F, Yang R Q, Lu Y D, Ye Z Z 2022 J. Mater. Chem. C 10 17154Google Scholar

    [40]

    Liu Y H, Zuo Q Y, Sun J Y, Dai J X, Cheng C H, Huang H L 2024 J. Appl. Phys. 135 184502Google Scholar

    [41]

    Shi Q W, Aziz I, Ciou J H, Wang J X, Gao D C, Xiong J Q, Lee P S 2022 Nano-Micro Lett. 14 195Google Scholar

    [42]

    Saka K, Gokcen D, Efkere H I, Bayram C, Ozcelik S 2025 J. Mater. Sci. : Mater. Electron. 36 824Google Scholar

    [43]

    Mahata C, So H, Ju D, Ismail M, Kim S, Hsu C C, Park K, Kim S 2024 Nano Energy 129 110015Google Scholar

    [44]

    Rudrapal K, Biswas M, Jana B, Adyam V, Chaudhuri A R 2023 J. Phys. D: Appl. Phys. 56 205302Google Scholar

    [45]

    Hwang H G, Pyo Y, Woo J U, Kim I S, Kim S W, Kim D S, Kim B, Jeong J, Nahm S 2022 J. Alloys Compd. 902 163764Google Scholar

    [46]

    Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H, Huang R 2017 Nat. Commun. 8 15173Google Scholar

    [47]

    Liu C, Zhang C C, Cao Y Q, Wu D, Wang P, Li A D 2020 J. Mater. Chem. C 8 12478Google Scholar

    [48]

    Fu L P, Liu H Y, Fan X L, Li Y T 2023 Phys. Scr. 98 095017Google Scholar

    [49]

    Hsu C C, Chuang H, Jhang W C 2021 J. Alloys Compd. 882 160758Google Scholar

    [50]

    Wu M C, Jang W Y, Lin C H, Tseng T Y 2012 Semicond. Sci. Technol. 27 065010Google Scholar

    [51]

    Ye Cong, Deng T F, Zhang J C, Shen L P, He P, Wei W, Wang H 2016 Semicond. Sci. Technol. 31 105005Google Scholar

    [52]

    Yan X Y, Wang X T, Xing B R, Yu Y, Yao J D, Niu X Y, Li M G, Sha J, Wang Y W 2020 AIP Adv. 10 075013Google Scholar

    [53]

    Yang C, Wang H Y, Cao Z L, Wang K, Zhou G D, Hou W T, Zhao Y, Sun B 2025 ACS Appl. Mater. Interfaces 17 6550Google Scholar

    [54]

    Wang J Q, Wang H Y, Cao Z L, Zhu S H, Du J M, Yang C, Ke C, Zhao Y, Sun B 2024 Adv. Funct. Mater. 34 2313219Google Scholar

    [55]

    Medvedeva J E, Zhuravlev I A, Burris C, Buchholz D B, Grayson M, Chang R P H 2020 J. Appl. Phys. 127 175701Google Scholar

    [56]

    Zhang D L, Wang J, Wu Q, Du Y 2023 Phys. Chem. Chem. Phys. 25 3521Google Scholar

    [57]

    Aziz J, Kim H, Rehman S, Hur J H, Song Y H, Khan M F, Kim D K 2021 Mater. Res. Bull. 144 111492Google Scholar

    [58]

    Fadeev A V, Rudenko K V 2024 Microelectron. Eng. 289 112179Google Scholar

    [59]

    Boynazarov T, Lee J, Lee H, Lee S, Chung H, Ryu D H, Abbas H, Choi T 2025 J. Mater. Sci. Technol. 227 164Google Scholar

  • [1] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展. 物理学报, doi: 10.7498/aps.72.20222266
    [2] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, doi: 10.7498/aps.72.20230797
    [3] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, doi: 10.7498/aps.72.20231232
    [4] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, doi: 10.7498/aps.70.20202196
    [5] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, doi: 10.7498/aps.70.20210116
    [6] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, doi: 10.7498/aps.69.20200617
    [7] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, doi: 10.7498/aps.68.20181577
    [8] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, doi: 10.7498/aps.68.20190808
    [9] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, doi: 10.7498/aps.67.20181028
    [10] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, doi: 10.7498/aps.67.20180425
    [11] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明. 基于六角氮化硼二维薄膜的忆阻器. 物理学报, doi: 10.7498/aps.66.217304
    [12] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, doi: 10.7498/aps.64.207302
    [13] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, doi: 10.7498/aps.63.187301
    [14] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, doi: 10.7498/aps.63.147301
    [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, doi: 10.7498/aps.63.123101
    [16] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, doi: 10.7498/aps.63.098402
    [17] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, doi: 10.7498/aps.63.048401
    [18] 李智炜, 刘海军, 徐欣. 忆阻逾渗导电模型中的初态影响. 物理学报, doi: 10.7498/aps.62.096401
    [19] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, doi: 10.7498/aps.62.047201
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  265
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-09-06
  • 上网日期:  2025-09-17

/

返回文章
返回