搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡各向异性Dicke模型中的量子热能输运

孔俊然 毛铓 刘焕 王晨

引用本文:
Citation:

非平衡各向异性Dicke模型中的量子热能输运

孔俊然, 毛铓, 刘焕, 王晨

Quantum heat transport in nonequilibrium anisotropic Dicke model

KONG Junran, MAO Mang, LIU Huan, WANG Chen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子光-物质相互作用系统的非平衡热能输运近来引起密切关注. 本文研究非平衡各向异性Dicke模型中的量子热流及热整流行为. 通过引入量子缀饰态主方程处理光子-量子比特强耦合. 研究结果表明, 各向异性光子-量子比特强耦合能有效调节热流. 量子比特数增多有利于增强热流. 在热力学极限近似和极限各向异性系数下, 得到热流的解析表达式. 该热流解析式为有限尺寸各向异性Dicke模型的热流上限. 较大的各向异性系数和光子-量子比特非弱耦合有助于实现显著的热整流效应.笔者希望这些结果能够加深对各向异性光-物质相互作用系统中非平衡热能输运的理解.
    Nonequilibrium heat transport and quantum thermodynamics in quantum light-matter interacting systems have received increasing attention recently. Consequently, quantum thermal devices, such as heat valve and head diode, have been realized. Recently, it has been discovered that the anisotropic light-matter interactions can greatly modify the eigenvalues and corresponding eigenvectors of hybrid quantum systems, leading to nontrivial quantum phase transitions, quantum metrology, and nonclassicality of photons. To explore the influences of anisotropic light-matter interactions on quantum transport, we investigate quantum heat flow in the nonequilibrium anisotropic Dicke model. In this model, an ensemble of qubits collectively interacts with an anisotropic photon field, moreover, each component interacts with bosonic thermal reservoirs. The quantum dressed master equation (DME) is included to properly study dissipative dynamics of the anisotropic Dicke model. Within the eigenbasis of the reduced anisotropic Dicke system, the strong qubit-photon couplings can be handled. Our results demonstrate that anisotropic qubit-photon interactions are crucial for modulating steady-state heat flow. In particular, it is found that under strong coupling the heat flow is dramatically suppressed by a large anisotropic qubit-photon factor. While under moderate coupling, the anisotropic qubit-photon interactions enhance the heat flow. Moreover, the increase in the number of qubits amplifies the flow characteristics, with the peaks increasing and the valleys decreasing. Besides, we derive two analytical expressions of heat flows in the thermodynamic limit approximation with limiting anisotropic factors. These heat currents exhibit the cotunneling heat transport pictures. They also serve as the upper boundaries for the heat flows in the anisotropic Dicke model with finite qubit numbers. We also analyze the thermal rectification effect in the anisotropic Dicke model. It is found that a large temperature bias, a large anisotropic qubit-photon factor, and nonweak qubit-photon coupling are helpful in achieving the giant thermal rectification factor. We hope that these results can deepen the understanding of nonequilibrium heat transport in the anisotropic quantum light-matter interacting systems.
  • 图 1  (a)和(b)分别是各向异性Dicke模型和耦合谐振子模型的示意图, 其中光子和量子比特分别与各自热库相互作用. (c)为方程(3)处的耦合振子哈密顿量在参数$ \omega_a=1 $, $ \varepsilon=0.8\omega_a $下的两个本征模. (d)展示了在本征基矢下耦合振子系统与热库之间的非相干能量交换过程

    Fig. 1.  A schematic description of (a) anisotropic Dicke model and (b) two-coupled-oscillator model, of which these quantum components, i.e., qubits and photons, individually interact with bosonic thermal reservoirs. (c) Two eigenmodes of two-coupled-oscillator Hamiltonian at Eq. (3) with $ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, and the truncation numbers of two bosonic modes are $ N^a_{\rm tr}=N^b_{\rm tr}=30 $. (d) Incoherent energy exchange processes between the two-coupled-oscillator system in the eigen-basis and the thermal reservoirs.

    图 2  光子-量子比特耦合强度λ和各向异性系数γ对热流$ J_q $的影响 (a) 为单量子比特极限, (b) $ N_{\mathrm{s}}=2 $、(c) $ N_{\mathrm{s}}=4 $和(d) $ N_{\mathrm{s}}=6 $为有限量子比特数下的热流行为. 图中的红色线条代表$ \gamma=0 $与$ \gamma=1 $下的热流行为. 其他系统参数为$ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, $ \omega_c= $$ 20\omega_a $, $ \alpha_r=\alpha_q=0.001\omega_a $, $ T_r=1.2\omega_a $, 和 $ T_q=0.6\omega_a $

    Fig. 2.  The influence of qubit-photon coupling strength λ and anisotropic factor γ on steady state heat flow $ J_q $ in (a) $ N_{\mathrm{s}}=1 $, and finite numbers of qubits (b) $ N_{\mathrm{s}}=2 $, (c) $ N_{\mathrm{s}}=4 $, and (d) $ N_{\mathrm{s}}=6 $. The redlines denote heat flows at $ \gamma=0 $ and $ \gamma=1 $ limiting cases. System parameters are given by $ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, $ \omega_c=20\omega_a $, $ \alpha_r=\alpha_q=0.001\omega_a $, $ T_r=1.2\omega_a $, and $ T_q=0.6\omega_a $.

    图 3  (a) 非平衡耦合谐振子中热流在同各向异性系数下的行为. (b) 各向异性系数在$ \lambda/\omega_a=0.4 $时对热流的影响. 其他系统参数为$ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, $ \omega_c=20\omega_a $, $ \alpha_r=\alpha_q=0.001\omega_a $, $ T_r=1.2\omega_a $和$ T_q=0.6\omega_a $

    Fig. 3.  (a) The steady-state heat flow of the nonequilibrium two-coupled-oscillator model by tuning the qubit-photon interaction strength with various anisotropic factors. (b) The influence of anisotropic factor on the heat flow at $ \lambda/\omega_a=0.4 $. Other system parameters are given by $ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, $ \omega_c=20\omega_a $, $ \alpha_r=\alpha_q=0.001\omega_a $, $ T_r=1.2\omega_a $, and $ T_q=0.6\omega_a $.

    图 4  $ N_{\mathrm{s}}=2 $时, 热整流因子$ {\cal{R}} $通过调节量子比特-光子耦合强度λ和温度偏差$ \varDelta{T} $ ($ T_r=T_0+{\varDelta}T/2 $, $ T_q=T_0-{\varDelta}T/2 $且$ T_0=\omega_a $)在(a) $ \gamma=0.2 $, (b) $ \gamma=0.5 $和(c) $ \gamma=0.8 $下的行为.$ {\cal{R}} $的最大值在(d) $ N_{\mathrm{s}}=2 $, (e) $ N_{\mathrm{s}}=4 $和(f)$ N_{\mathrm{s}}=6 $下与λγ的关系. 其他系统参数为$ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, $ \omega_c=20\omega_a $和$ \alpha_r=\alpha_q=0.001\omega_a $

    Fig. 4.  Thermal rectification factor $ {\cal{R}} $ by tuning qubit-photon coupling strength λ and temperature bias $ \varDelta{T} $ ($ T_r=T_0+{\varDelta}T/2 $, $ T_q=T_0-{\varDelta}T/2 $, and $ T_0=\omega_a $) with $ N_{\mathrm{s}}=2 $ at (a) $ \gamma=0.2 $, (b) $ \gamma=0.5 $, and (c) $ \gamma=0.8 $. Maximal value of $ {\cal{R}} $ by searching over the temperature bias as a function of λ and γ with (d) $ N_{\mathrm{s}}=2 $, (e) $ N_{\mathrm{s}}=4 $, and (f) $ N_{\mathrm{s}}=6 $. Other system parameters are given by $ \omega_a=1 $, $ \varepsilon=0.8\omega_a $, $ \omega_c=20\omega_a $, and $ \alpha_r=\alpha_q=0.001\omega_a $.

  • [1]

    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G 1998 Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH, New Jersey

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press, Cambridge

    [3]

    Haroche S, Brune M, Raimond J M 2020 Nat. Phys. 16 243Google Scholar

    [4]

    Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 PNAS 112 3866Google Scholar

    [5]

    Gonzalez-Tudela A, Reiserer A, Garcia-Ripoll J J, Garcia-Vidal F J 2024 Nat. Rev. Phys. 6 166Google Scholar

    [6]

    Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, Pekola J P 2018 Nat. Phys. 14 991Google Scholar

    [7]

    Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001Google Scholar

    [8]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [9]

    Greentree A D, Koch J, Larson J 2013 J. Phys. B 46 220201Google Scholar

    [10]

    Blais A, Girvin S M, Oliver W D 2020 Nat. Phys. 16 247Google Scholar

    [11]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [12]

    Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A, Petta J R 2012 Nature 490 380Google Scholar

    [13]

    Lin T, Li H O, Cao G, Guo G P 2023 Chin. Phys. B 32 070307Google Scholar

    [14]

    Jaako T, Garcia-Ripoll J J, Rabl P 2020 Adv. Quantum Technol. 3 1900125Google Scholar

    [15]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [16]

    Rabi I I 1936 Phys. Rev. 49 324Google Scholar

    [17]

    Rabi I I 1937 Phys. Rev. 51 652Google Scholar

    [18]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [19]

    Braak D, Chen Q H, Batchelor M T, Solano E 2016 J. Phys. B 49 300301

    [20]

    Xie Q T, Cui S, Cao J P, Amico L, Fan H 2014 Phys. Rev. X 4 021046

    [21]

    Lyu G T, Kottmann K, Plenio M B, Myung-Joong H 2024 Phys. Rev. Research 6 033075Google Scholar

    [22]

    Lu J H, Ning W, Zhu X, Wu F, Shen L T, Yang Z B, Zheng S B 2022 Phys. Rev. A 106 062616Google Scholar

    [23]

    Zhu X, Lu J H, Ning W, Wu F, Shen L T, Yang Z B, Zheng S B 2023 Science China Physics, Mechanics, and Astronomy 66 250313Google Scholar

    [24]

    Chen Z H, Che H X, Chen Z K, Wang C, Ren J 2022 Phys. Rev. Research 4 013152Google Scholar

    [25]

    Ye T, Wang C, Chen Q H 2023 Physica A 609 128364Google Scholar

    [26]

    Ye T, Wang C, Chen Q H 2024 Optics Express 32 33483Google Scholar

    [27]

    Zhang Y Y, Chen X Y 2017 Phys. Rev. A 96 063821Google Scholar

    [28]

    Dicke R H, 1954 Phys. Rev. 93 99Google Scholar

    [29]

    Kirton P, Roses M M, Keeling J, Dalla Torre E G 2018 Adv. Quantum Technol. 2 1800043

    [30]

    Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar

    [31]

    Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602Google Scholar

    [32]

    Yu L X, Liang Q F, Wang L R, Zhu S Q 2014 Acta Phys. Sin. 63 134204Google Scholar

    [33]

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [34]

    Gyhm Ju-Yeon, Safranek D, Rosa D 2022 Phys. Rev. Lett. 128 140501Google Scholar

    [35]

    Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. A 106 032212Google Scholar

    [36]

    Huang B Y, He Z, Chen Y 2023 Acta Phys. Sin. 72 180301Google Scholar

    [37]

    Seidov S S, Mukhin S I 2024 Phys. Rev. A 109 022210Google Scholar

    [38]

    Weiss U 2021 Quantum Dissipative Systems (World Scientific, Singapore

    [39]

    Chiacchio1 E I R, Nunnenkamp A, Brunelli M 2023 Phys. Rev. Lett. 131 113602Google Scholar

    [40]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602Google Scholar

    [41]

    Vivek G, Mondal D, Chakraborty S, Sinha S 2025 Phys. Rev. Lett. 134 113404Google Scholar

    [42]

    Gong Z P, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120 040404Google Scholar

    [43]

    Jager S B, Giesen J M, Schneider I, Eggert S 2024 Phys. Rev. A 110 L010202Google Scholar

    [44]

    Kirton P, Keeling J 2018 New J. Phys. 20 015009Google Scholar

    [45]

    Strashko A, Kirton P, Keeling J 2018 Phys. Rev. Lett. 121 193601Google Scholar

    [46]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706Google Scholar

    [47]

    Chen X Y, Zhang Y Y, Chen Q H, Lin H Q 2024 Phys. Rev. A 110 063722Google Scholar

    [48]

    Buijsman1 W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [49]

    Zhu X, Lu J H, Ning W, Shen L T, Wu F, Yang Z B 2024 Phys. Rev. A 109 052621Google Scholar

    [50]

    Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, Pekola J P 2020 Communications Physics 3 40Google Scholar

    [51]

    Gubaydullin A, Thomas G, Golubev D S, Lvov D, Peltonen J T, Pekola J P 2022 Nat. Commun. 13 1552Google Scholar

    [52]

    Liu Y Q, Yang Y J, Yu C S, 2023 Phys. Rev. E 107 044121Google Scholar

    [53]

    Zhao X D, Xing Y, Cao J, Liu S T, Cui W X, Wang H F, 2023 npj Quantum Information 9 59Google Scholar

    [54]

    Lu J C, Wang R Q, Ren J, Kulkarni M, Jiang J H 2019 Phys. Rev. B 99 035129Google Scholar

    [55]

    Majland M, Christensen K S, Zinner N T 2020 Phys. Rev. B 101 184510Google Scholar

    [56]

    Wang C, Chen H, Liao J Q 2021 Phys. Rev. A 104 033701Google Scholar

    [57]

    Andolina G M, Erdman P A, Noe F, Pekola J, Schiro M 2024 Phys. Rev. Research 6 043128Google Scholar

    [58]

    Beaudoin F, Gambetta J M, Blais A 2011 Phys. Rev. A 84 043832Google Scholar

    [59]

    Altintas F, Eryigit R 2013 Phys. Rev. A 87 022124Google Scholar

    [60]

    Le Boite A 2020 Adv. Quantum Technol. 3 1900140Google Scholar

    [61]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [62]

    Li N B, Ren J, Wang L, Zhang G, Hanggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [63]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [64]

    Zhang L F, Yan Y H, Wu C Q, Wang J S, Li B W 2009 Phys. Rev. B 80 172301Google Scholar

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, doi: 10.7498/aps.74.20241031
    [2] 朱小龙, 刘雨林. 基于滑移铁电VTe2多铁隧道结的输运性质研究. 物理学报, doi: 10.7498/aps.74.20250734
    [3] 邓小松, 张志勇, 康宁. 基于一维电子体系的超导复合器件和量子输运研究. 物理学报, doi: 10.7498/aps.74.20241672
    [4] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论. 物理学报, doi: 10.7498/aps.72.20222470
    [5] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, doi: 10.7498/aps.72.20230502
    [6] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, doi: 10.7498/aps.72.20222159
    [7] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, doi: 10.7498/aps.71.20211970
    [8] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, doi: 10.7498/aps.71.20220029
    [9] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, doi: 10.7498/aps.71.20221304
    [10] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, doi: 10.7498/aps.68.20191072
    [11] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, doi: 10.7498/aps.68.20190095
    [12] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172221
    [13] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, doi: 10.7498/aps.64.097202
    [14] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象. 物理学报, doi: 10.7498/aps.64.210302
    [15] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, doi: 10.7498/aps.63.170302
    [16] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究. 物理学报, doi: 10.7498/aps.61.117104
    [17] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质. 物理学报, doi: 10.7498/aps.61.193601
    [18] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [19] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
    [20] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, doi: 10.7498/aps.58.4162
计量
  • 文章访问数:  427
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-28
  • 修回日期:  2025-08-14
  • 上网日期:  2025-09-05

/

返回文章
返回