搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷对Sn1–xPbxTe/Pb异质结电子态的影响

易朝霞 杨浩 郑炜严 谢邦晋 郜泽华 陈维炯 伊合绵 刘晓雪 刘亮 管丹丹 王世勇 郑浩 刘灿华 李耀义 贾金锋

引用本文:
Citation:

缺陷对Sn1–xPbxTe/Pb异质结电子态的影响

易朝霞, 杨浩, 郑炜严, 谢邦晋, 郜泽华, 陈维炯, 伊合绵, 刘晓雪, 刘亮, 管丹丹, 王世勇, 郑浩, 刘灿华, 李耀义, 贾金锋

Influence of defects on electronic property of Sn1–xPbxTe/Pb heterostructure

YI Zhaoxia, YANG Hao, ZHENG Weiyan, XIE Bangjin, GAO Zehua, CHEN Weijiong, YI Hemian, LIU Xiaoxue, LIU Liang, GUAN Dandan, WANG Shiyong, ZHENG Hao, LIU Canhua, LI Yaoyi, JIA Jinfeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • SnTe类拓扑晶体绝缘体发生超导转变后, 在其单个磁通涡旋中能够形成受晶体对称性保护的多重Majorana零能模. 这种奇特的性质能够降低多个Majorana零能模之间相互作用的难度. 最近多重Majorana零能模存在的实验证据已在SnTe/Pb超导异质结单个磁通涡旋中被观测到. SnTe是一种非常p型的半导体材料, 如何调控其电子性质, 在分辨和操控Majorana零能模方面具有重要研究意义. 本文利用分子束外延技术在Si (111)衬底生长的Pb (111)薄膜上制备了Sn1–xPbxTe薄膜, 并且通过扫描隧道显微镜研究了薄膜边缘、畴界以及位错对其电子态的影响. 扫描隧道显微镜的微分电导谱显示, 在薄膜边缘、畴界以及位错附近, Sn1–xPbxTe电子态相对于费米能级的位置能够发生显著改变, 载流子类型能从p型转变到n型. 在远离这些缺陷的区域, Pb含量对Sn1–xPbxTe的费米能级的影响不显著, 但是过多的Pb含量会抑制磁通中零能峰的形成. 该研究将为基于SnTe类材料的拓扑超导器件的设计提供新的思路.
    SnTe-type topological crystalline insulators (TCIs) possess multiple Dirac-like topological surface states under the mirror-symmetry protection. Superconducting SnTe-type TCIs are predicted to form multiple Majorana zero modes (MZMs) in a single magnetic vortex. For the spatially isolated MZMs, there is only one MZM in a single vortex at surface. However, experimental demonstration of coupling the two isolated MZMs by changing wire length or intervortex distance is very challenging. For the multiple MZMs, two or more MZMs can coexist together in a single vortex. Thus, the novel property is expected to significantly reduce the difficulty in producing hybridization between MZMs. Recently, the experimental evidence for multiple MZMs has been observed in a single vortex of the superconducting SnTe/Pb heterostructure. However, SnTe is a heavily p-type semiconductor which is very difficult to induce the p-type to n-type transition via doping or alloying. The study on the Fermi-level tuning of SnTe-type TCIs is important for detecting and manipulating multiple MZMs. In this work, we report the influence of defects, such as film edge, grain boundary and dislocation, on the electronic property of Sn1–xPbxTe/Pb. The Sn1–xPbxTe films are prepared on the Pb (111) films grown on the Si (111) substrate by the molecular beam epitaxial technology. The structural and electronic properties of the Sn1–xPbxTe films are detected in situ by using low-temperature scanning tunneling microscopy and spectroscopy. The differential conductance tunneling spectra show that the minima of dI/dV spectra taken in the areas near the film edge, the grain boundary and the dislocation of Sn1–xPbxTe grown on Pb can be significantly changed to the energy very close to the Fermi level or even about -0.2 eV below the Fermi level, whereas the minima of dI/dV spectra taken in the areas far away from the defects are always at about 0.2 eV above the Fermi level. It indicates that these quasi one-dimensional defects, rather than Pb alloying, play an important role in modifying electronic property of the Sn1–xPbxTe/Pb heterostructure. Moreover, the Pb alloying will suppress the formation of zero-energy peak in the vortex. These results are expected to develop the method of the Fermi-level tuning for the SnTe-type topological superconducting devices that do not require doping or alloying.
  • 图 1  Sn1–xPbxTe/Pb的薄膜边缘附近的STM和STS测量 (a)在190 ℃的Pb膜上沉积SnTe得到的平整薄膜的STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (b)在图(a)中红点处测的dI/dV谱, 样品偏压Vset = 0.35 V, 隧穿电流Iset = 0.1 nA; (c)薄膜边缘附近的STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (d)沿图(c)中绿色线条处的高度轮廓图, 沟壑的深度约9 nm; (e) 在图(c)中黑点处测的dI/dV谱, 样品偏压Vset = 0.20 V, 隧穿电流Iset = 0.1 nA; (f)在图(c)中蓝点处测的dI/dV谱, 样品偏压Vset = 0.35 V, 隧穿电流Iset = 0.1 nA; (g)在图(c)黑点处和(h)蓝点处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA, 在图(g)和(h)中Pb含量分别为23.2%和25.1%

    Fig. 1.  STM and STS measurements near the edge of Sn1–xPbxTe film grown on Pb: (a) STM image (450 nm × 450 nm) of the flat film obtained by deposition of SnTe on Pb film at 190 ℃ (Vset = 2 V, Iset = 0.1 nA); (b) dI/dV spectrum taken at the red dot in Fig. (a) (Vset = 0.35 V, Iset = 0.1 nA); (c) STM image (450 nm × 450 nm) near the film edge (Vset = 2 V, Iset = 0.1 nA); (d) line profile taken along the green line in (c), the depth of the trench is about 9 nm; (e) dI/dV spectra taken at the black dot in (c)(Vset = 0.20 V, Iset = 0.1 nA); (f) dI/dV spectra taken at the blue dot in (c)(Vset = 0.35 V, Iset = 0.1 nA); (g), (h) atomically resolved STM images (10 nm × 10 nm) taken at the black and blue dots in (c), respectively. Vset = 0.8 V, Iset = 0.1 nA, the Pb content of (g) and (h) are 23.2% and 25.1%.

    图 2  Sn1–xPbxTe/Pb的畴界附近的STM和STS测量 (a)在Pb膜上先室温沉积20 nm厚的SnTe然后在180 ℃继续沉积20 nm厚的SnTe得到的样品的STM图, 扫描尺寸200 nm × 200 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (b)—(e)分别为在图(a)中A1—A4 方框处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA, 在图(b)—(e)中Pb含量分别为25.3%, 16.6%, 32.7%, 7.9%; (f)图(c)中D1—D3 点处测的dI/dV谱, 对于dI/dV谱D1, 样品偏压Vset = 0.40 V, 隧穿电流Iset = 0.1 nA, 对于dI/dV谱D2, 样品偏压Vset = 0.20 V, 隧穿电流Iset = 0.1 nA, 对于dI/dV谱D3, 样品偏压Vset = 0.25 V, 隧穿电流Iset = 0.1 nA

    Fig. 2.  STM and STS measurements near the grain boundary of Sn1–xPbxTe film grown on Pb: (a) STM image (200 nm × 200 nm) of the sample obtained by deposition of 20 nm thick SnTe on Pb film at room temperature and then further deposition of 20 nm thick SnTe at 180 ℃ (Vset = 2 V, Iset = 0.1 nA); (b)–(e) atomically resolved STM images (10 nm × 10 nm) taken at the squares A1—A4 in (a), respectively, Vset = 0.8 V, Iset = 0.1 nA, the Pb content of (b)–(e) are 25.3%, 16.6%, 32.7% and 7.9%; (f) dI/dV spectra taken at the dots D1—D3 in (a), respectively, for the dI/dV spectrum D1, Vset = 0.40 V, Iset = 0.1 nA, for the dI/dV spectrum D2, Vset = 0.20 V, Iset = 0.1 nA, for the dI/dV spectrum D3, Vset = 0.25 V, Iset = 0.1 nA.

    图 3  Sn1–xPbxTe/Pb的位错附近的STM和STS测量 (a)在Pb膜上室温沉积40 nm厚的SnTe然后在100 ℃退火3 h得到的样品的STM图, 扫描尺寸200 nm × 200 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (b) 在图(a)中红色方框处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA, Pb含量为20.2%; (c)在图(a)中红色方框和蓝色箭头处测的dI/dV谱, 对于红色dI/dV谱, 样品偏压Vset = 0.40 V, 隧穿电流Iset = 0.1 nA, 对于蓝色dI/dV谱, 样品偏压Vset = 0.10 V, 隧穿电流Iset = 0.1 nA; (d) 在Pb膜上室温沉积40 nm厚的SnTe得到的样品的STM图, 扫描尺寸200 nm × 200 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (e)在图(d)中红色方框处的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.7 V, 隧穿电流Iset = 0.1 nA; (f) 在图(d)中红色方框处测的dI/dV谱, 样品偏压Vset = 0.58 V, 隧穿电流Iset = 0.1 nA.

    Fig. 3.  STM and STS measurements near the dislocation of Sn1–xPbxTe film grown on Pb: (a) STM image (200 nm × 200 nm) of the sample obtained by deposition of 40 nm thick SnTe on Pb film at room temperature and followed by annealing at 100 ℃ for 3 h (Vset = 2 V, Iset = 0.1 nA); (b) atomically resolved STM image (10 nm × 10 nm) taken at the red square in (a), Vset = 0.8 V, Iset = 0.1 nA, the Pb content is 20.2%; (c) dI/dV spectra taken at the red square and blue arrow in (a), respectively, for the red dI/dV spectrum, Vset = 0.40 V, Iset = 0.1 nA, for the blue dI/dV spectrum, Vset = 0.10 V, Iset = 0.1 nA; (d) STM image (200 nm × 200 nm) of the sample obtained by deposition of 40 nm thick SnTe on Pb film at room temperature (Vset = 2 V, Iset = 0.1 nA); (e) atomically resolved STM image (10 nm × 10 nm) taken at the red square in (d), Vset = 0.7 V, Iset = 0.1 nA; (f) dI/dV spectrum taken at the red square in (d), Vset = 0.58 V, Iset = 0.1 nA.

    图 4  合金元素Pb对磁通束缚态的影响 (a)在190 ℃的Pb膜上沉积SnTe得到的样品表面的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.8 V, 隧穿电流Iset = 0.1 nA; (b) 该平整薄膜的大范围STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (c)相应的零偏压dI/dV映射图, 磁场强度B = 0.02 T, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 6 mV, 隧穿电流Iset = 0.1 nA; (d)沿图(c)中绿色线条处测的一系列dI/dV谱, 样品偏压Vset = 3 mV, 隧穿电流Iset = 0.1 nA; (e)在180 ℃的Pb膜上共沉积SnTe和PbTe得到的样品表面的原子分辨STM图, 扫描尺寸10 nm × 10 nm, 样品偏压Vset = 0.7 V, 隧穿电流Iset = 0.1 nA. Pb含量为19.2%; (f)该平整薄膜的大范围STM图, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 2 V, 隧穿电流Iset = 0.1 nA; (g)相应的零偏压dI/dV映射图, 磁场强度B = 0.04 T, 扫描尺寸450 nm × 450 nm, 样品偏压Vset = 6 mV, 隧穿电流Iset = 0.1 nA; (h)沿图(g)中绿色线条处测的一系列dI/dV谱, 样品偏压Vset = 3 mV, 隧穿电流Iset = 0.1 nA

    Fig. 4.  Effect of alloying element Pb on vortex bound states: (a) Atomically resolved STM image (10 nm × 10 nm) taken on the surface of the sample obtained by deposition of SnTe on Pb film at 190 ℃ (Vset = 0.8 V, Iset = 0.1 nA); (b) large-scale STM image (450 nm × 450 nm) of the flat film (Vset = 2 V, Iset = 0.1 nA); (c) corresponding zero-bias dI/dV map under magnetic field of B = 0.02 T (450 nm × 450 nm, Vset = 6 mV, Iset = 0.1 nA); (d) series of dI/dV spectra taken alone the green line in (c) (Vset = 3 mV, Iset = 0.1 nA); (e) atomically resolved STM image (10 nm × 10 nm) taken on the surface of the sample obtained by co-deposition of SnTe and PbTe on Pb film at 180 ℃ (Vset = 0.7 V, Iset = 0.1 nA), the Pb content is 19.2%; (f) large-scale STM image (450 nm × 450 nm) of the flat film (Vset = 2 V, Iset = 0.1 nA); (g) corresponding zero-bias dI/dV map under magnetic field of B = 0.04 T (450 nm × 450 nm, Vset = 6 mV, Iset = 0.1 nA); (h)series of dI/dV spectra taken alone the green line in (g) (Vset = 3 mV, Iset = 0.1 nA).

  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    李耀义, 贾金锋 2019 物理学报 68 137401Google Scholar

    Li Y Y, Jia J F 2019 Acta Phys. Sin. 68 137401Google Scholar

    [3]

    何映萍, 洪健松, 刘雄军 2020 物理学报 69 110302Google Scholar

    He Y P, Hong J S, Liu X J 2020 Acta Phys. Sin. 69 110302Google Scholar

    [4]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [5]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [6]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [7]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [8]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [9]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056

    [10]

    Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook S J, Wang Z Q, Gao H J 2022 Nature 606 890Google Scholar

    [11]

    Yuan Y H, Pan J, Wang X T, Fang Y Q, Song C L, Wang L L, He K, Ma X C, Zhang H J, Huang F Q, Li W, Xue Q K 2019 Nat. Phys. 15 1046Google Scholar

    [12]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [13]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 111 056402Google Scholar

    [14]

    Liu X J, He J J, Law K T 2014 Phys. Rev. B 90 235141Google Scholar

    [15]

    Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 112 106401Google Scholar

    [16]

    Kobayashi S, Furusaki A 2020 Phys. Rev. B 102 180505Google Scholar

    [17]

    Luo X J, Pan X H, Shi Y L, Wu F C 2025 Phys. Rev. B 111 144501Google Scholar

    [18]

    Liu T T, Wan C Y, Yang H, Zhao Y J, Xie B J, Zheng W Y, Yi Z X, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Liu J W, Li Y Y, Jia J F 2024 Nature 633 71Google Scholar

    [19]

    Wang J F, Wang N, Huang H Q, Duan W H 2016 Chin. Phys. B 25 117313Google Scholar

    [20]

    Zhang D M, Baek H, Ha J, Zhang T, Wyrick J, Davydov A V, Kuk Y, Stroscio J A 2014 Phys. Rev. B 89 245445Google Scholar

    [21]

    Zeljkovic I, Walkup D, Assaf B A, Scipioni K L, Sankar R, Chou F C, Madhavan V 2015 Nat. Nanotechnol. 10 849Google Scholar

    [22]

    Liu T T, Yi Z X, Xie B J, Zheng W Y, Guan D D, Wang S Y, Zheng H, Liu C H, Yang H, Li Y Y, Jia J F 2024 Sci. China-Phys. Mech. Astron. 67 286811Google Scholar

    [23]

    Xie B J, Yi Z X, Zheng W Y, Gao Z H, Guan D D, Liu X X, Liu L, Wang S Y, Zheng H, Liu C H, Yang H, Li Y Y, Jia J F 2025 Nano Lett. 25 7981Google Scholar

    [24]

    Liu W, Hu Q, Wang X, Zhong Y, Yang F, Kong L, Cao L, Li G, Peng Y, Okazaki K, Kondo T, Jin C, Xu J, Gao H J, Ding H 2022 Quantum Front. 1 20Google Scholar

    [25]

    Wan C Y, Zhao Y J, Li Y Y, Jia J F, Liu J W 2024 Quantum Front. 3 20Google Scholar

    [26]

    Mandal P S, Springholz G, Volobuev V V, Caha O, Varykhalov A, Golias E, Bauer G, Rader O, Sánchez-Barriga J 2017 Nat. Commun. 8 968Google Scholar

    [27]

    Volobuev V V, Mandal P S, Galicka M, Caha O, Sánchez-Barriga J, Di Sante D, Varykhalov A, Khiar A, Picozzi S, Bauer G, Kacman P, Buczko R, Rader O, Springholz G 2017 Adv. Mater. 29 1604185Google Scholar

    [28]

    Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar

    [29]

    Chen R S, Ding G L, Zhou Y, Han S T 2021 J. Mater. Chem. C 9 11407Google Scholar

    [30]

    Shen P C, Su C, Lin Y X, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z Y, Mao N N, Wang J T, Tung V C, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J 2021 Nature 593 211Google Scholar

    [31]

    Yang Z, Kim C, Lee K Y, Lee M, Appalakondaiah S, Ra C H, Watanabe K, Taniguchi T, Cho K, Hwang E, Hone J, Yoo W J 2019 Adv. Mater. 31 1808231Google Scholar

    [32]

    Parto K, Pal A, Chavan T, Agashiwala K, Yeh C H, Cao W, Banerjee K 2021 Phys. Rev. Appl. 15 064068Google Scholar

    [33]

    Yang H, Li Y Y, Liu T T, Xue H Y, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Jia J F 2019 Adv. Mater. 31 1905582Google Scholar

    [34]

    Yang H, Li Y Y, Liu T T, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Jia J F 2020 Phys. Rev. Lett. 125 136802Google Scholar

    [35]

    Tanaka Y, Sato T, Nakayama K, Souma S, Takahashi T, Ren Z, Novak M, Segawa K, Ando Y 2013 Phys. Rev. B 87 155105Google Scholar

    [36]

    Liu X C, Choi M S, Hwang E, Yoo W J, Sun J 2022 Adv. Mater. 34 2108425Google Scholar

    [37]

    Yu H, Gupta S, Kutana A, Yakobson B I 2021 J. Phys. Chem. Lett. 12 4299Google Scholar

    [38]

    Nill K W, Calawa A R, Harman T C 1970 Appl. Phys. Lett. 16 375Google Scholar

    [39]

    Springholz G, Wiesauer K 2002 Phys. Rev. Lett. 88 015507

    [40]

    Renner C, Kent A D, Niedermann P, Fischer Ø, Lévy F 1991 Phys. Rev. Lett. 67 1650Google Scholar

    [41]

    Ning Y X, Song C L, Wang Y L, Chen X, Jia J F, Xue Q K, Ma X C 2010 J. Phys.: Condens. Matter 22 065701

    [42]

    Liu Y, Li Y Y, Gilks D, Lazarov V K, Weinert M, Li L 2013 Phys. Rev. Lett. 110 186804Google Scholar

    [43]

    Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K, Li L 2014 Nat. Phys. 10 294Google Scholar

  • [1] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, doi: 10.7498/aps.73.20240560
    [2] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, doi: 10.7498/aps.71.20211157
    [3] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, doi: 10.7498/aps.70.20210783
    [4] 李香草, 刘宝安, 李猛, 闫春燕, 任杰, 刘畅, 巨新. 用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷. 物理学报, doi: 10.7498/aps.69.20200482
    [5] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.68.20191631
    [6] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, doi: 10.7498/aps.67.20181681
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, doi: 10.7498/aps.67.20181818
    [8] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.65.116801
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, doi: 10.7498/aps.65.226801
    [10] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, doi: 10.7498/aps.64.078101
    [11] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.60.037301
    [12] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, doi: 10.7498/aps.60.116803
    [13] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析. 物理学报, doi: 10.7498/aps.58.3532
    [14] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, doi: 10.7498/aps.54.824
    [15] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, doi: 10.7498/aps.54.2899
    [16] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.54.284
    [17] 于天宝, 刘念华. 光脉冲通过含有色散与增益型缺陷的一维光子晶体的传播. 物理学报, doi: 10.7498/aps.53.3049
    [18] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.50.517
    [19] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.49.1316
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  268
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-30
  • 修回日期:  2025-09-12
  • 上网日期:  2025-09-18

/

返回文章
返回