搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于周期调控的离轴超表面全息成像位置研究

郭文浩 蒲欣欣 张维 梁海峰 朱业传 侯劲尧 孙雪平 周顺 刘卫国

引用本文:
Citation:

基于周期调控的离轴超表面全息成像位置研究

郭文浩, 蒲欣欣, 张维, 梁海峰, 朱业传, 侯劲尧, 孙雪平, 周顺, 刘卫国

Off-axis metasurface holographic imaging positions based on periodic modulation

GUO Wenhao, PU Xinxin, ZHANG Wei, LIANG Haifeng, ZHU Yechuan, HOU Jinyao, SUN Xueping, ZHOU Shun, LIU Weiguo
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于平面光学器件的超表面全息图因其在实现光学器件和系统微型化方面的潜力而受到广泛关注. 然而, 传统同轴全息术中固有的零级衍射和双像效应会显著降低成像质量, 限制其在实际应用中的推广. 相比之下, 离轴超表面全息成像具有显著优势. 在离轴超表面全息的设计过程中, 不同周期的单元结构会导致全息图在成像过程中产生图像位置偏移的现象. 为此, 本文研究了单元结构周期对离轴全息成像位置的影响. 采用高透过率的二氧化硅作为基底材料, 以二氧化钛作为相位调控单元, 设计工作波长为635 nm. 数值模拟结果表明, 随着单元结构周期的增加, 全息像的中心位置逐渐靠近成像面的中心区域. 在该设计方案中, 当周期设定为 324 nm时, 全息像能够成像于预设位置. 此外, 分别对不同离轴角度和单元结构高度构建的超表面全息图进行数值模拟分析发现, 成像位置均位于设计位置处, 说明成像位置主要受周期影响. 因此, 可以通过精确调控周期参数, 实现全息图像在预定位置的重建, 从而为高精度全息成像系统设计提供理论依据.
    Metasurface holography based on planar optical devices has attracted considerable attention due to its potential for miniaturizing optical components and systems. However, traditional on-axis holography has inherent zeroth-order diffraction and twin-image effects, which significantly degrade image quality and limit its practical applications. Off-axis metasurface holography, in contrast, provides a promising solution to overcoming these limitations. In this work, we design a metasurface hologram composed of titanium dioxide (TiO2) nanopillars on a silicon dioxide (SiO2) substrate,by using the high refractive index and low optical loss of TiO2 in the visible light range to achieve efficient phase control. The unit cell height is set to 600 nm to ensure sufficient phase accumulation, and the working wavelength is 635 nm. The hologram is constructed by mapping the continuous 0–2π phase distribution obtained from computational holography onto the unit cell array, and changing the nanopillar diameter to achieve full phase coverage. We systematically investigate the effect of the unit cell period on the imaging position in off-axis holography. Numerical simulations show that as the period increases from 280 nm to 350 nm, the center of the holographic image gradually shifts toward the center of the image plane. The optimal period is found to be 324 nm, at which the image is reconstructed precisely at the designed position. Further simulations using different off-axis angles (0°–45°) and nanopillar heights (600–2000 nm) confirm that the imaging position remains fixed at the target location, indicating that it is mainly determined by the unit cell period rather than other structural parameters. These results demonstrate that by carefully selecting the unit cell period, the holographic image can be accurately reconstructed at a predetermined positions with high image quality, providing theoretical guidance for designing high-precision off-axis metasurface holographic imaging systems.
  • 图 1  超表面全息图示意图 (a) 基于超表面的全息成像示意图; (b) 单个周期内的单元结构示意图

    Fig. 1.  Schematic diagram of metasurface hologram: (a) Schematic diagram of metasurface-based holographic imaging; (b) the unit cell diagram in one period.

    图 2  不同周期单元结构的相位调制和透射率随直径的变化 (a) 相位调制; (b) 透射率

    Fig. 2.  Variation of phase shift and transmission with diameter for the unit cell with various period: (a) Phase shift; (b) transmission.

    图 3  离轴全息图模拟 (a) 目标图案; (b) 相位全息图; (c) 计算机生成的全息像

    Fig. 3.  Simulation of off-axis hologram: (a) Target pattern; (b) phase-only hologram; (c) computer-generated hologram imaging.

    图 4  (a)—(h) 单元结构周期分别为280, 290, 300, 310, 320, 330, 340, 350 nm时的全息图数值模拟结果; (i) 不同周期对应的全息图像中心坐标; (j) 全息像中心坐标xy与单元结构周期变化关系拟合曲线

    Fig. 4.  (a)—(h) Numerical simulation results of holography images with the unit cell periods of 280, 290, 300, 310, 320, 330, 340, and 350 nm; (i) centre coordinates of holographic images corresponding to different periods; (j) fitted curves of the dependence of the holographic image center coordinates x and y on the unit cell period.

    图 5  (a)—(j) 单元结构周期分别为310, 312, 314, 316, 318, 320, 322, 324, 326, 328 nm时的全息图数值模拟结果; (k) 全息像中心坐标xy与单元结构周期变化关系拟合曲线

    Fig. 5.  (a)—(j) Numerical simulation results of holography images with the unit cell periods of 310, 312, 314, 316, 318, 320, 322, 324, 326 and 328 nm; (k) fitted curves of the dependence of the holographic image center coordinates x and y on the unit cell period.

    图 6  不同周期下成像性能 (a) 理想情况下成像效果; (b) PSNR; (c) SSIM

    Fig. 6.  Imaging performance under different periods: (a) Ideal imaging result; (b) PSNR; (c) SSIM.

    图 7  数值模拟单元结构周期P分别为310, 316, 324, 330 nm时的电场强度分布 (a)—(d) 纳米柱直径D = 100 nm; (e)—(h) 纳米柱满足2π相位时最大直径

    Fig. 7.  Electric field intensity distributions from numerical simulations for unit cell periods P = 310, 316, 324, and 330 nm: (a)–(d) The nanopillar diameter D = 100 nm; (e)–(h) the maximum nanopillar diameter at 2π phase.

    图 8  (a)—(j)单元结构周期P为324 nm时, 离轴角分别为0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°和45°时的数值模拟结果

    Fig. 8.  (a)–(j) Numerical simulation results of holograms generated by the off-axis angle of 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40° and 45°.

    图 9  不同高度单元结构的相位调制和透射率随直径的变化 (a)相位调制; (b)透射率

    Fig. 9.  Variation of phase shift and transmission with diameter for the unit cell with various height: (a) Phase shift; (b) transmission.

    图 10  (a)—(j) 单元结构高度分别为600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000 nm时的全息图数值模拟结果

    Fig. 10.  (a)–(j) Numerical simulation results of holograms with the unit structure height of 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, and 2000 nm.

  • [1]

    Thureja P, Shirmanesh G K, Fountaine K T, Sokhoyan R, Grajower M, Atwater H A 2020 ACS Nano 14 15042Google Scholar

    [2]

    Su D E, Wang X W, Shang G Y, Ding X M, Burokur S N, Liu J, Li H Y 2022 J. Phys. D: Appl. Phys. 23 5102

    [3]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [4]

    Wang Z H, Zhu Y C, Zhou S, Guo W H, Liu Y, He C, Bai M Y, Liu W G 2024 Infrared Phys. Techn. 142 105521Google Scholar

    [5]

    Yuan Y Y, Sun S, Chen Y, Zhang K, Ding X M, Ratni B, Wu Q, Burokur S N, Qiu C W 2020 Adv. Sci. 7 2001437Google Scholar

    [6]

    Yue Z, Li J T, Zheng C L, Li J, Chen M Y, Hao X R, Xu H, Wang Q, Zhang Y T, Yao J Q 2022 Chin. Opt. Lett. 20 043601Google Scholar

    [7]

    Yuan Y Y, Zhang K, Ratni B, Song Q H, Ding X M, Wu Q, Burokur S N, Genevet P 2020 Nat. Commun. 11 4186Google Scholar

    [8]

    徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201Google Scholar

    Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201Google Scholar

    [9]

    Ren H R, Fang X Y, Jang J, Bürger J, Rho J, Maier S A 2020 Nat. Nanotechnol. 15 945

    [10]

    Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [11]

    Ji R N, Zheng X R, Li Y L, Xie X, Lin F C, Liu C, Zheng Y W, Yu P Q, Li X R, Song K, Li Z F, Lu W, Zhang S, Wang S W, Wang D, Wang Q H 2025 Laser Photonics Rev. 19 e00398Google Scholar

    [12]

    Pu X X, Sun X P, Ge S B, Cheng J, Zhou S, Liu W G 2022 Micromachines-Basel. 13 1956Google Scholar

    [13]

    Wang Q, Zhang X Q, Xu Y H, Gu J Q, Li Y F, Tian Z, Singh R , Zhang S , Han J G, Zhang W L 2016 Sci. Rep 6 32867

    [14]

    Liu K F, Chen Q M, Liu Y L, Song S C, Zhang H M, Shi L T, He M Y, Xiao S Q, Xiao S M, Zhang X H 2024 Appl. Phys. Lett. 125 041703Google Scholar

    [15]

    Zhao W Y, Liu B Y, Jiang H, Song J, Pei Y B, Jiang Y Y 2016 Opt. Lett. 41 147Google Scholar

    [16]

    Li X, Chen L W, Li Y, Zhang X H, Pu M B, Zhao Z Y 2016 Sci. Adv. 2 e1600892Google Scholar

    [17]

    Li X, Chen L W, Li Y, Zhang X H, Pu M B, Zhao Z Y, Ma X I, Wang Y Q, Hong M H, Luo X A 2016 Sci. Adv. 2 e1601102Google Scholar

    [18]

    Malek S C, Ee H S, Agarwal R 2016 Nano Lett. 16 5053Google Scholar

    [19]

    Li Z, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk’yanchuk B S, Wang Y, Zheng G X, Rho J, Qiu C W 2017 ACS Nano 11 9382Google Scholar

    [20]

    Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [21]

    Gao F, Zhou X, Lu L T, Deng J, Yan B 2023 Results Phys. 49 107835

    [22]

    Bao Y J, Yu Y, Xu H F, Guo C, Li J T, Sun S, Zhou Z K, Qiu C W, Wang X H 2019 Light Sci. Appl. 8 95Google Scholar

    [23]

    Noh J, Kim J, Rho J 2024 Nano Lett. 46 5417

    [24]

    Gopakumar M, Lee G Y, Choi S, Chao B, Peng Y F, Kim J, Wetzstein G 2024 Nature 629 791Google Scholar

    [25]

    Guo W H, Pu X X, Zhu Y C, Wang Z H, Sun X P, Liu Y, Zhou S, Ge S B, Hang L Y, Liu W G 2025 Opt. Commun. 535 130015

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, doi: 10.7498/aps.73.20231357
    [3] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, doi: 10.7498/aps.72.20222011
    [4] 史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田. 幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计. 物理学报, doi: 10.7498/aps.72.20230775
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, doi: 10.7498/aps.72.20230471
    [6] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, doi: 10.7498/aps.71.20221256
    [7] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, doi: 10.7498/aps.71.20221706
    [8] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, doi: 10.7498/aps.70.20210681
    [9] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作. 物理学报, doi: 10.7498/aps.70.20202235
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, doi: 10.7498/aps.70.20201495
    [11] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, doi: 10.7498/aps.70.20201047
    [12] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, doi: 10.7498/aps.69.20200453
    [13] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, doi: 10.7498/aps.69.20191225
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [15] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, doi: 10.7498/aps.65.074101
    [16] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, doi: 10.7498/aps.64.178101
    [17] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, doi: 10.7498/aps.64.184101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, doi: 10.7498/aps.64.124102
    [19] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, doi: 10.7498/aps.64.164102
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  308
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-07
  • 修回日期:  2025-09-24
  • 上网日期:  2025-11-01

/

返回文章
返回