搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多物理场耦合下固态电池死锂的相场法研究

包文彬 龚国庆

引用本文:
Citation:

基于多物理场耦合下固态电池死锂的相场法研究

包文彬, 龚国庆

Phase-field modeling of dead lithium in solid-state batteries via multiphysics coupling

BAO Wenbin, GONG Guoqing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 固态电池凭借能量密度大, 安全系数高等优势, 近年来逐渐成为人们关注和研究的焦点. 锂枝晶是影响电池安全性和使用寿命的关键因素, 严重时会发生电池短路的情况. 相较于液态电池, 固态电池依赖于机械强度更高的固态电解质, 能有效地抑制锂枝晶的生长, 然而随着充放电循环次数的增加, 由于锂枝晶未完全溶解而产生的死锂逐渐累积, 电池的性能逐渐降低. 本文针对固态电池中的死锂问题, 采用相场法模拟了力-热-电化学三种物理场耦合下的锂枝晶溶解和死锂产生过程. 结论显示, 当在相场模型中耦合入传热模型或者力学场后, 枝晶溶解截止时间和死锂面积都会发生变化. 同时, 在此基础上升高温度或是施加低外压、高外压时, 死锂面积都会降低. 而对于改变电化学参数, 减小扩散系数、增大界面迁移率以及减小各向异性强度都能有效地减少死锂面积.
    Owing to, Solid-state batteries have gradually become the focus of people's attention and research in recent years due to the advantages of high energy density and high safety factor. Lithium dendrites are a key factor affecting battery safety and service life, and in severe cases, battery short circuits can occur. Compared with liquid batteries, solid-state batteries rely on solid-state electrolytes with higher mechanical strength, which can effectively inhibit the growth of lithium dendrites, but with the increase of the number of charge-discharge cycles, the dead lithium produced by the incomplete dissolution of lithium dendrites gradually accumulates, and the performance of the battery gradually decreases. In this work, the problem of dead lithium in solid-state batteries is studied by using COMSOL Multiphysics 6.2 finite element simulation software. Due to the fact that existing research on dead lithium mainly focuses on phase field models combined with binary physics, there is little research on the influence of electrochemical parameters on dead lithium. Therefore, the phase field method is used to simulate the dissolution of lithium dendrites and the formation of dead lithium under the coupling of force-thermal-electrochemical fields. When the heat transfer model is coupled, the difference in the morphology of dead lithium before and after the coupled heat transfer model is further studied by applying an external pressure to change the stress of lithium dendrites. When the coupled mechanical field changes, the morphology of dead lithium before and after the coupled mechanical field is further studied by changing the temperature magnitude. At the same time, the effects of changes in three electrochemical parameters, namely diffusion coefficient, interfacial mobility and anisotropic strength, on the area of dead lithium are also explored. The research results indicate that when the heat transfer model or mechanical field is coupled into the phase field model, the dendrite dissolution cut-off time and dead lithium area will change. When the base rises at high temperature or when low external pressure or high external pressure is applied, the area of dead lithium decreases. For changing the electrochemical parameters, reducing the diffusion coefficient, increasing the interfacial mobility and reducing the anisotropic strength can effectively reduce the area of dead lithium.
  • 图 1  不同相场模型下锂枝晶的生长情况 (a) 未耦合传热模型的锂枝晶形貌; (b) 耦合传热模型的锂枝晶形貌; (c) 未耦合传热模型的von Mises应力(单位: MPa); (d) 耦合传热模型的von Mises应力(单位: MPa)

    Fig. 1.  Growth of lithium dendrites under different phase field models: (a) Lithium dendrite morphology of uncoupled heat transfer model; (b) lithium dendrite morphology of coupled heat transfer model; (c) von Mises stress for uncoupled heat transfer model (in MPa); (d) von Mises stress coupled to the heat transfer model (in MPa).

    图 2  未耦合传热模型的锂枝晶溶解情况 (a) 锂枝晶形貌变化; (b) von Mises应力(单位: MPa)

    Fig. 2.  Dissolution of lithium dendrites in uncoupled heat transfer models: (a) Lithium dendrites change in morphology; (b) von Mises stress (in MPa).

    图 3  耦合传热模型的锂枝晶溶解情况 (a) 锂枝晶形貌变化; (b) von Mises应力(单位: MPa)

    Fig. 3.  Dissolution of lithium dendrites in coupled heat transfer model: (a) Lithium dendrites change in morphology; (b) von Mises stress(in MPa).

    图 4  未耦合传热模型加压5 MPa (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa); (c) 死锂形貌

    Fig. 4.  Uncoupled heat transfer model is pressurized to 5 MPa: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa); (c) dead lithium morphology.

    图 5  耦合传热模型加压5 MPa (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa); (c) 死锂形貌

    Fig. 5.  Coupled heat transfer model is pressurized to 5 MPa: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa); (c) dead lithium morphology.

    图 6  不同外压下锂枝晶的生长和溶解情况 (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa); (c) 死锂形貌

    Fig. 6.  Growth and dissolution of lithium dendrites under different external pressures: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa); (c) dead lithium morphology.

    图 7  锂枝晶的溶解以及相场温度变化情况 (a) 未耦合力学场锂枝晶溶解情况; (b) 未耦合力学场温度变化; (c) 耦合力学场温度变化

    Fig. 7.  Dissolution of lithium dendrites and changes in phase field temperature: (a) Dissolution of lithium dendrites in the uncoupled mechanical field; (b) temperature changes in the uncoupled mechanical field; (c) temperature changes in the coupled mechanical field.

    图 8  未耦合力学场、环境温度353 K下锂枝晶的溶解形貌

    Fig. 8.  Dissolution morphology of lithium dendrites at ambient temperature of 353 K in the uncoupled mechanical field.

    图 9  耦合力学场、环境温度353 K下锂枝晶的溶解情况 (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa)

    Fig. 9.  Dissolution of lithium dendrites at ambient temperature 353 K: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa).

    图 10  耦合力学场、环境温度273 K下锂枝晶溶解情况 (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa)

    Fig. 10.  Dissolution of lithium dendrites at ambient temperature 273 K: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa).

    图 11  不同扩散系数下锂枝晶的生长与溶解情况 (a) 增大扩散系数锂枝晶形貌; (b) 减小扩散系数锂枝晶形貌; (c) 增大扩散系数死锂形貌; (d) 减小扩散系数死锂形貌

    Fig. 11.  Growth and dissolution of lithium dendrites under different diffusion coefficients: (a) Lithium dendrite morphology when the diffusion coefficient is increased; (b) lithium dendrite morphology when the diffusion coefficient is decreased; (c) dead lithium morphology when the diffusion coefficient is increased; (d) dead lithium morphology when the diffusion coefficient is decreased.

    图 12  不同界面迁移率下锂枝晶的生长与溶解情况 (a) 锂枝晶形貌; (b) 死锂形貌

    Fig. 12.  Growth and dissolution of lithium dendrites under different interfacial mobility: (a) Lithium dendrite morphology; (b) dead lithium morphology.

    图 13  不同各向异性强度下的锂枝晶生长情况

    Fig. 13.  Lithium dendrite growth under different anisotropic strengths.

    图 14  不同各向异性强度下的死锂形貌

    Fig. 14.  Dead lithium morphology under different anisotropic strengths.

    表 1  相场参数

    Table 1.  Phase field parameters.

    参数名 符号 数值 文献
    梯度能量系数/(10–10 J·m–1) $ {\kappa }_{0} $ 1 [15]
    各向异性强度 $ \delta $ 0.1 [15]
    各向异性模数 $ \omega $ 4 [22]
    势垒高度/(105 J·m–3) $ W $ 3.75 [22]
    标准体积浓度/(103 mol·m–3) $ {c}_{0} $ 1 [22]
    环境温度/K $ {T}_{0} $ 293 [14]
    电极杨氏模量/GPa $ {E}^{\mathrm{e}} $ 7.8 [14]
    电解质杨氏模量/GPa $ {E}^{\mathrm{s}} $ 1 [14]
    电极泊松比 $ {v}^{\mathrm{e}} $ 0.42 [15]
    电解质泊松比 $ {v}^{\mathrm{s}} $ 0.3 [15]
    –0.866×10–3
    Vegard应变系数 $ {\lambda }_{i} $ –0.773×10–3 [14]
    –0.529×10–3
    界面迁移率/(10–6 m3·J–1·s–1) $ {L}_{\sigma } $ 1 [22]
    反应常数/s–1 $ {L}_{\eta } $ 0.5 [22]
    对称因子 $ \alpha $ 0.5 [22]
    固相锂浓度/(104 mol·m–3) $ {C}_{\mathrm{s}} $ 7.64 [22]
    电极电导率/(107 S·m–1) $ {\sigma }^{\mathrm{e}} $ 1 [14]
    电解质电导率/(S·m–1) $ {\sigma }^{\mathrm{s}} $ 0.1 [14]
    电极比热容/(J·kg–1·K–1) $ {c}^{\mathrm{p}\mathrm{e}} $ 1200 [14]
    电解质比热容/(J·kg–1·K–1) $ {c}^{\mathrm{p}\mathrm{s}} $ 133 [14]
    电极导热系数/(W·m–1·K–1) $ {\lambda }^{\mathrm{e}} $ 1.04 [14]
    电解质导热系数/(W·m–1·K–1) $ {\lambda }^{\mathrm{s}} $ 0.45 [14]
    对流换热系数/(W·m–2·K–1) $ \mathrm{h} $ 10 [17]
    下载: 导出CSV
  • [1]

    Duan X R, Li Y J, Huang K, Tu S B, Li G C, Wang W Y, Luo H Y, Chen Z H, Li C H, Cheng K, Wang X X, Wang L, Sun Y M 2025 Sci. Bull. 70 914Google Scholar

    [2]

    Wang Y X, Li Y H, Wang X H, Gao Y, Li C H, Meng T, Zhang H F, Chee P S, Makhlouf S A 2025 Adv. Mater. 37 e2420373Google Scholar

    [3]

    Jin C B, Liu T F, Sheng O W, Matthew L, Liu T C, Yuan Y F, Nai J W, Ju Z J, Zhang W K, Liu Y J, Wang Y, Lin Z, Lu J, Tao X Y 2021 Nat. Energy 6 378Google Scholar

    [4]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376Google Scholar

    [5]

    Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q 2022 J. Energy Chem. 71 29Google Scholar

    [6]

    Qiao D G, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2022 J. Energy Storage 49 104137Google Scholar

    [7]

    Shen X, Zhang R, Shi P, Zhang X Q, Chen X, Zhao C Z, Wu P, Guo Y M, Huang J Q, Zhang Q 2024 Fundam. Res. 4 1498Google Scholar

    [8]

    Gao L T, Huang P Y, Guo Z S 2022 ACS Appl. Mater. Interfaces 14 41957Google Scholar

    [9]

    Xiang Y X, Tao M M, Chen X X, Shan P Z, Zhao D H, Wu J, Lin M, Liu X S, He H J, Zhao W M, Hu Y G, Chen J N, Wang Y X, Yang Y 2023 Nat. Commun. 14 177Google Scholar

    [10]

    Zhu S, Hong Z J, Ahmad Z, Venkatasubramanian V 2023 ACS Appl. Mater. Interfaces 15 6639Google Scholar

    [11]

    Han D D, Lin C 2024 J. Energy Storage 83 110641Google Scholar

    [12]

    Yang H D, Wang Z J 2023 J. Solid State Electrochem. 27 2607Google Scholar

    [13]

    Wang Z H, Jiang W J, Zhao Y Z, Hu L Z, Wang Y, Ma Z S 2022 J. Solid State Electrochem. 27 245

    [14]

    侯鹏洋, 谢佳苗, 李京阳, 张鹏, 李兆凯, 郝文乾, 田佳, 王哲, 李福正 2025 物理学报 74 070201Google Scholar

    Hou P Y, Xie J M, Li J Y, Zhang P, Li Z K, Hao W Q, Tian J, Wang Z, Li F Z 2025 Acta Phys. Sin. 74 070201Google Scholar

    [15]

    翟艳芳, 杨佳悦, 邓齐波, 宋树丰, 赵莹, 胡宁 2024 固体力学学报 45 587

    Zhai Y F, Yang J Y, Deng Q B, Song S F, Zhao Y, Hu N 2024 Chin. J. Solid Mech. 45 587

    [16]

    杨皓东 2023 硕士学位论文 (成都: 西南交通大学)

    Yang H D 2023 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [17]

    梁辰, 邢鹏飞, 吴孟武, 秦训鹏 2025 储能科学与技术 14 1829

    Liang C, Xing P F, Wu M W, Qin X P 2025 Energy Storage Sci. Technol. 14 1829

    [18]

    Zhang Y X, Li K, Li Y F, Shen W J, Qu X Y, Huang J D, Lin Y X 2023 J. Energy Storage 74 109422Google Scholar

    [19]

    耿晓彬 2024 硕士学位论文 (武汉: 华中科技大学)

    Geng X B 2024 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [20]

    Um J H, Yu S H 2021 Adv. Energy Mater. 11 2003004Google Scholar

    [21]

    岳昕阳, 马萃, 包戬, 杨思宇, 陈东, 吴晓京, 周永宁 2021 物理化学学报 37 2005012

    Yue X Y, Ma C, Bao J, Yang S Y, Chen D, Wu X J, Zhou Y N 2021 Acta Phys. -Chim. Sin. 37 2005012

    [22]

    汪泽华 2023 硕士学位论文 (湘潭: 湘潭大学)

    Wang Z H 2023 M. S. Thesis (Xiangtan: Xiangtan University

    [23]

    Tao M M, Chen X X, Lin H X, Jin Y T, Shan P Z, Zhao D H, Gao M B, Liang Z T, Yang Y 2023 ACS Nano 17 24104Google Scholar

    [24]

    侯书增, 曾博洋, 吕勇奇, 孙夏宜, 彭鑫淋 2025 力学学报 57 1952

    Hou S Z, Zeng B Y, Lv Y Q, Sun X Y, Peng X L 2025 Chin. J. Theor. Appl. Mech. 57 1952

    [25]

    Zhang C, Wang D, Lei C, Zhao Y 2023 J. Electrochem. Soc. 170 052506Google Scholar

  • [1] 吴思远, 李泓. 大语言模型在电池科研全流程应用的测评与无机固态电解质综合数据库构建. 物理学报, doi: 10.7498/aps.74.20250572
    [2] 侯鹏洋, 谢佳苗, 李京阳, 张鹏, 李兆凯, 郝文乾, 田佳, 王哲, 李福正. 基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟. 物理学报, doi: 10.7498/aps.74.20241727
    [3] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, doi: 10.7498/aps.72.20230824
    [4] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展. 物理学报, doi: 10.7498/aps.69.20201581
    [5] 刘玉龙, 辛明杨, 丛丽娜, 谢海明. 聚氧乙烯基聚合物固态电池的界面研究进展. 物理学报, doi: 10.7498/aps.69.20201588
    [6] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, doi: 10.7498/aps.69.20201218
    [7] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题. 物理学报, doi: 10.7498/aps.69.20201191
    [8] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, doi: 10.7498/aps.69.20201293
    [9] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, doi: 10.7498/aps.68.20190603
    [10] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, doi: 10.7498/aps.66.070701
    [11] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, doi: 10.7498/aps.64.148101
    [12] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, doi: 10.7498/aps.61.118103
    [13] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, doi: 10.7498/aps.60.040507
    [14] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, doi: 10.7498/aps.58.7802
    [15] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, doi: 10.7498/aps.57.1084
    [16] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, doi: 10.7498/aps.57.4585
    [17] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, doi: 10.7498/aps.56.1514
    [18] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, doi: 10.7498/aps.55.1341
    [19] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, doi: 10.7498/aps.54.3740
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  419
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-09
  • 修回日期:  2025-09-19
  • 上网日期:  2025-09-30

/

返回文章
返回