搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络与改进视觉变换器的涡旋光束叠加态轨道角动量模式识别方法

宋泽坤 刘涛 赵振兵 张荣香 代华德

引用本文:
Citation:

基于卷积神经网络与改进视觉变换器的涡旋光束叠加态轨道角动量模式识别方法

宋泽坤, 刘涛, 赵振兵, 张荣香, 代华德
cstr: 32037.14.aps.75.20251048

Orbital angular momentum pattern recognition method for vortex beam superposition states based on convolutional neural network and improved vision transformer

SONG Zekun, LIU Tao, ZHAO Zhenbing, ZHANG Rongxiang, DAI Huade
cstr: 32037.14.aps.75.20251048
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文提出了一种基于卷积神经网络(convolutional neural network, CNN)与改进视觉变换器(vision transformer, VIT)的涡旋光束叠加态轨道角动量(orbital angular momentum, OAM)模式识别方法. 以海洋湍流畸变的三组拉盖尔-高斯光束模式叠加光场强度分布图为输入, 有机整合了CNN的局部特征提取优势与稀疏注意力机制驱动的VIT的全局快速分类能力, 实现端到端的波前畸变高效精准识别. 通过数值仿真模拟海洋湍流环境叠加态OAM模式, 利用功率谱反演法模拟海洋湍流, 以识别准确率和混淆矩阵作为OAM模式识别的评估指标. 实验结果表明, CNN-VIT模型在不同海洋湍流强度、波长、传输距离和模式间隔条件下均展现出优异的OAM模式识别准确率性能. 与现有的CNN和VIT相比, 本文模型在强海洋湍流条件下识别准确率分别提升了23.5%和9.65%. 这证明了CNN-VIT模型在涡旋光叠加态OAM模式识别的应用潜力.
    This work proposes a pattern recognition method for the superposition state orbital angular momentum (OAM) of vortex beams based on convolutional neural network (CNN) and improved vision transformer (VIT). Organically integrating the local feature extraction advantages of CNN with the global fast classification ability of VIT driven by sparse attention mechanism, using three sets of Laguerre-Gaussian (LG) beam patterns with superimposed light field intensity distribution maps of ocean turbulence distortion as input, efficient and accurate recognition of end-to-end wavefront distortion is realized. MATLAB numerical simulation is adopted to simulate the superposition state LG beam in ocean turbulent environment, power spectrum inversion method is used to simulate ocean turbulence, and recognition accuracy and confusion matrix are used as evaluation indicators for OAM pattern recognition. The experimental results show that the CNN-VIT model exhibits excellent performance in OAM pattern recognition accuracy under different ocean turbulence intensities, wavelengths, transmission distances, and mode intervals. Compared with existing CNN and VIT, the proposed model improves recognition accuracy by 23.5% and 9.65% respectively under strong ocean turbulence conditions, thus exhibiting strong generalization ability under unknown ocean turbulence strengths. This demonstrates the potential application of the CNN-VIT model in OAM pattern recognition of vortex light superposition states.
      通信作者: 刘涛, taoliu@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071180)和河北省研究生课程思政示范项目(批准号: YKCSZ2024095)资助的课题.
      Corresponding author: LIU Tao, taoliu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071180) and the Ideological and Political Education Demonstration Project for Graduate Courses in Hebei Province, China (Grant No. YKCSZ2024095).
    [1]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light: Sci. Appl. 7 17146Google Scholar

    [2]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [3]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90Google Scholar

    [4]

    Molina Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601Google Scholar

    [5]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [6]

    Ren Y X, Huang H, Xie G D, Ahmed N, Yan Y, Erkmen B I, Chandrasekaran N, Lavery M P J, Steinhoff N K, Tur M, Dolinar S, Neifeld M, Padgett M J, Boyd R W, Shapiro J H, Willner A E 2013 Opt. Lett. 38 4062Google Scholar

    [7]

    Zhu X L, Guo L, Zhu Q 2018 IEEE Photonics J. 10 135Google Scholar

    [8]

    Fan W Q, Gao F L, Xue F C, Guo J J, Xiao Y, Gu Y J 2024 Appl. Opt. 63 982Google Scholar

    [9]

    Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84Google Scholar

    [10]

    杨春勇, 闪开鸽 2020 中南民族大学学报(自然科学版) 39 390Google Scholar

    Yang C Y, Shan K G 2020 J. South-Central Minzhu Univ. (Nat. Sci. Ed. ) 39 390Google Scholar

    [11]

    Wang X Y, Wang Z Y, Cheng Z Y, Pu J X 2022 Chin. J. Quantum Electron. 39 955Google Scholar

    [12]

    Wang Z L, Li X F, Cai Y J, Liu X L 2025 Opt. Express 33 12591Google Scholar

    [13]

    郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博 2025 物理学报 74 014203Google Scholar

    Guo Y, Lü H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [14]

    张成志, 曹阳, 涂巧玲, 彭小峰 2023 激光杂志 22 062235

    Zhang C Z, Cao Y, Tu Q L, Peng X F 2023 Laser J. 22 062235

    [15]

    Zhou X, Chen C Y, Yu H Y 2023 Laser Optoelectron. Prog. 60 2306003Google Scholar

    [16]

    Wang J, Wang C B, Tan Z K, Lei S C, Wu P F 2024 Sci. Sin. Phys. Mech. Astron. 54 284211Google Scholar

    [17]

    Lu J N, Cao C Y, Zhu Z Q, Gu B 2020 Appl. Phys. Lett. 116 201105Google Scholar

    [18]

    吴鹏飞, 王小蝶, 王姣, 谭振坤, 贾致远 2023 光学学报 43 1126001Google Scholar

    Wu P F, Wang X D, Wang J, Tan Z K, Jia Z Y 2023 Acta Opt. 43 1126001Google Scholar

    [19]

    蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 104217Google Scholar

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 104217Google Scholar

    [20]

    Nikishov V 2000 Int. J. Fluid Mech. Res. 27 82Google Scholar

    [21]

    Hu J, Shen L, Albanie S, Sun G, Wu E H 2020 IEEE Trans. Pattern Anal. Mach. Intell. 42 2011Google Scholar

    [22]

    Wang T , Lan J F, Han Z 2022 Front. Neurosci. 16 5Google Scholar

  • 图 1  3组OAM模式集中16种叠加LG光束强度分布图像 (a) Set1, Δl = 1; (b) Set2, Δl = 3; (c) Set3, Δl = 5

    Fig. 1.  The 16 superimposed LG beam intensity images in three OAM mode sets: (a) Set1, Δl = 1; (b) Set2, Δl = 3; (c) Set3, Δl = 5.

    图 2  功率谱反演法模拟海洋湍流光强扰动

    Fig. 2.  Simulation of oceanic turbulence using power spectrum inversion method.

    图 3  CNN 和VIT 融合网络结构

    Fig. 3.  Fusion network structure of CNN and VIT.

    图 4  不同湍流情况下识别准确率随迭代次数的变化

    Fig. 4.  Variation of recognition accuracy with the number of iterations under different turbulence conditions.

    图 5  不同距离(a)和不同波长(b)下识别准确率随迭代次数的变化

    Fig. 5.  Variation of recognition accuracy with iteration count at different distances (a) and different wavelengths (b).

    图 6  不同模型识别准确率随传输距离(a)和湍流强度(b)的变化

    Fig. 6.  Variation of recognition accuracy of different models with transmission distance (a) and turbulence intensity (b).

    图 7  不同模型混淆矩阵

    Fig. 7.  Confusion matrix of different models.

    图 8  不同湍流强度下识别准确率随不同模式间隔的变化

    Fig. 8.  Variation of recognition accuracy with different mode intervals under different turbulence intensities.

    表 1  LG光束模式选择

    Table 1.  LG beam mode selection.

    组别拓扑荷数间隔叠加OAM模式
    Set1$ \Delta l=1 $$ \left\{{p}_{2}=0, 1, 2, 3;\right.\left.{l}_{2}=-2, -1, 0, 1\right\} $
    Set2$ \Delta l=3 $$ \left\{{p}_{2}=0, 1, 2, 3;\right.\left.{l}_{2}=-5, -2, 1, 4\right\} $
    Set3$ \Delta l=5 $$ \left\{{p}_{2}=0, 1, 2, 3;\right.\left.{l}_{2}=-8, -3, 2, 7\right\} $
    下载: 导出CSV

    表 2  硬件平台配置和模型参数

    Table 2.  Hardware platform configuration and model parameters.

    配置型号参数设置数值
    操作系统Windows10迭代次数100
    CPUIntel40核E5
    2670处理器
    批次值16
    GPUNVIDIA
    RTX3090
    学习率0.01
    内存64 G标签平滑Le-5
    CDUA11学习率
    衰减模型
    Cosine Annealing
    LrUpdater
    编程语言Python3.8优化器类型Adam
    下载: 导出CSV
  • [1]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light: Sci. Appl. 7 17146Google Scholar

    [2]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [3]

    Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L, Yuan X C 2019 Light: Sci. Appl. 8 90Google Scholar

    [4]

    Molina Terriza G, Torres J P, Torner L 2001 Phys. Rev. Lett. 88 013601Google Scholar

    [5]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [6]

    Ren Y X, Huang H, Xie G D, Ahmed N, Yan Y, Erkmen B I, Chandrasekaran N, Lavery M P J, Steinhoff N K, Tur M, Dolinar S, Neifeld M, Padgett M J, Boyd R W, Shapiro J H, Willner A E 2013 Opt. Lett. 38 4062Google Scholar

    [7]

    Zhu X L, Guo L, Zhu Q 2018 IEEE Photonics J. 10 135Google Scholar

    [8]

    Fan W Q, Gao F L, Xue F C, Guo J J, Xiao Y, Gu Y J 2024 Appl. Opt. 63 982Google Scholar

    [9]

    Krizhevsky A, Sutskever I, Hinton G E 2017 Commun. ACM 60 84Google Scholar

    [10]

    杨春勇, 闪开鸽 2020 中南民族大学学报(自然科学版) 39 390Google Scholar

    Yang C Y, Shan K G 2020 J. South-Central Minzhu Univ. (Nat. Sci. Ed. ) 39 390Google Scholar

    [11]

    Wang X Y, Wang Z Y, Cheng Z Y, Pu J X 2022 Chin. J. Quantum Electron. 39 955Google Scholar

    [12]

    Wang Z L, Li X F, Cai Y J, Liu X L 2025 Opt. Express 33 12591Google Scholar

    [13]

    郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博 2025 物理学报 74 014203Google Scholar

    Guo Y, Lü H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [14]

    张成志, 曹阳, 涂巧玲, 彭小峰 2023 激光杂志 22 062235

    Zhang C Z, Cao Y, Tu Q L, Peng X F 2023 Laser J. 22 062235

    [15]

    Zhou X, Chen C Y, Yu H Y 2023 Laser Optoelectron. Prog. 60 2306003Google Scholar

    [16]

    Wang J, Wang C B, Tan Z K, Lei S C, Wu P F 2024 Sci. Sin. Phys. Mech. Astron. 54 284211Google Scholar

    [17]

    Lu J N, Cao C Y, Zhu Z Q, Gu B 2020 Appl. Phys. Lett. 116 201105Google Scholar

    [18]

    吴鹏飞, 王小蝶, 王姣, 谭振坤, 贾致远 2023 光学学报 43 1126001Google Scholar

    Wu P F, Wang X D, Wang J, Tan Z K, Jia Z Y 2023 Acta Opt. 43 1126001Google Scholar

    [19]

    蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 104217Google Scholar

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 104217Google Scholar

    [20]

    Nikishov V 2000 Int. J. Fluid Mech. Res. 27 82Google Scholar

    [21]

    Hu J, Shen L, Albanie S, Sun G, Wu E H 2020 IEEE Trans. Pattern Anal. Mach. Intell. 42 2011Google Scholar

    [22]

    Wang T , Lan J F, Han Z 2022 Front. Neurosci. 16 5Google Scholar

  • [1] 姜廷帅, 阮逸润, 李海, 白亮, 袁逸飞, 于天元. 基于信息熵赋权的多通道卷积神经网络节点重要性评估方法. 物理学报, 2025, 74(12): 126401. doi: 10.7498/aps.74.20250329
    [2] 朱顺凯, 袁方, 胡凯, 皮涛涛, 朱熙铖, 李程. 基于卷积神经网络的双站雷达散射截面减缩超表面设计. 物理学报, 2025, 74(10): 107802. doi: 10.7498/aps.74.20250109
    [3] 吴银花, 种喆, 朱鹏飞, 陈莎莎, 周顺. 基于卷积神经网络的非对称共光路相干色散光谱仪背景白光干扰去除. 物理学报, 2025, 74(10): 104201. doi: 10.7498/aps.74.20250090
    [4] 张荣香, 代华德, 刘涛, 王唯钰, 周允城, 毕慧聪. 聚焦超几何高斯二型光束在海洋湍流中的信道容量. 物理学报, 2025, 74(11): 114207. doi: 10.7498/aps.74.20250306
    [5] 宋泽坤, 刘涛, 赵振兵, 张荣香, 代华德. 亨伯特二型光束在海洋湍流中的传输特性. 物理学报, 2025, 74(19): 194201. doi: 10.7498/aps.74.20250627
    [6] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [7] 赵子博, 庄革, 谢锦林, 渠承明, 强子薇. 用于等离子体相干模式自动识别的谱聚类算法实现. 物理学报, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [8] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [9] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法. 物理学报, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [10] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [11] 李雷, 颜涵, 陈湘明. 低损耗材料微波介电性能测试中识别TE01δ模式的新方法. 物理学报, 2020, 69(12): 128401. doi: 10.7498/aps.69.20200275
    [12] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [13] 吴彤, 季小玲, 罗燏娟. 海洋湍流中自适应光学成像系统特征参量研究. 物理学报, 2018, 67(5): 054206. doi: 10.7498/aps.67.20171851
    [14] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究. 物理学报, 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [15] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [16] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [17] 李凯彦, 赵兴群, 孙小菡, 万遂人. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法. 物理学报, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [18] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [19] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  698
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-05
  • 修回日期:  2025-09-22
  • 上网日期:  2025-11-01
  • 刊出日期:  2026-01-05

/

返回文章
返回