Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical properties of GaN:Tb nanoparticles synthesized by simple ammonification method

Pan Xiao-Jun An Xiu-Yun Zhang Hai-Jun Zhang Zhen-Xing Xie Er-Qing

Citation:

Optical properties of GaN:Tb nanoparticles synthesized by simple ammonification method

Pan Xiao-Jun, An Xiu-Yun, Zhang Hai-Jun, Zhang Zhen-Xing, Xie Er-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • GaN:Tb nanoparticles are synthesized by simple ammonification of a mixture of Ga(NO3)3 and Tb(NO3)3. The XRD result shows that the sample predominantly presents hexagonal phase of GaN and its average grain size is 22.1 nm. TEM images show that the sizes of the particles are almost uniform. Besides conventional GaN Raman shifts, two extra peaks at 251 and 414 cm-1 observed in the Raman spectra can be attributed to the phonons activated by surface disorders or finite-size effects and vibration mode of N-rich octahedral Ga-N6 bonds, respectively. From photoluminescence spectra, four characteristic peaks of Tb3+ions are clearly observed: 5D4 →7F6(493.9 nm), 5D4 →7F5(551.2 nm), 5D4 →7F4(594.4 nm), 5D4 →7F3(630.1 nm).
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2012-34).
    [1]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687

    [2]

    Wilson R G, Schwartz R N, Abernathy C R, Peartor S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992

    [3]

    Steckl A J, Birkhahn R 1998 Appl. Phys. Lett. 73 1700

    [4]

    Steckl A J, Zavada J M 1999 MRS Bull. 24 33

    [5]

    Steckl A J, Heinkenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y, Jones R 2002 IEEE J. Sel. Top. Quantum Electron. 8 749

    [6]

    Kim J H, Shepherd N, Davidson M, Holloway P H 2003 Appl. Phys. Lett. 83 641

    [7]

    Kim J H, Davidson M R, Holloway P H 2003 Appl. Phys. Lett. 83 4746

    [8]

    Kim J H, Holloway P H 2004 J. Appl. Phys. 95 4787

    [9]

    Pan X J, Zhang Z X, Jia L, Li H, Xie E Q 2008 J. Alloy. Compd. 458 579

    [10]

    Pan X J, Zhang Z X, Wang T, Li H, Xie E Q 2008 Acta Phys. Sin. 57 3786 (in Chinese) [潘孝军, 张振兴, 王涛, 李晖, 谢二庆 2008 物理学报 57 3786]

    [11]

    Xie Y, Qian Y T, Wang W Z, Zhang S Y, Zhang Y H 1996 Science 272 1926

    [12]

    Pan G Q, Kordesch M E, Patten P G 2006 Chem. Mater. 18 5392

    [13]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [14]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [15]

    Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U, Park T E, Choi H J 2007 Nano Lett. 7 3366

    [16]

    Cavallini A, Polenta L, Rossi M 2007 Nano Lett. 7 2166

    [17]

    Jacobs B W, Ayres V M, Petkov M P, Halpern J B, He M Q, Baczewski A D, McElroy K, Crimp M A, Zhang J M, Shaw H C 2007 Nano Lett. 7 1435

    [18]

    Wu H Q, Poitras C B, Lipson M, Spencer M G, Hunting J, DiSalvo F J 2006 Appl. Phys. Lett. 88 011921

    [19]

    Podhorodecki A, Nyk M, Misiewicz J, Strek W 2007 J. Lumin. 126 219

    [20]

    Podhorodecki A, Nyk M, Kudrawiec R, Misiewicz J, Strek W 2007 Electrochem. Solid-State Lett. 10 H88

    [21]

    Pan X J, An X Y, Zhang Z X, Zhou J Y, Xie E Q 2012 J. Alloy. Compd. 519 67

    [22]

    Andreev A A 2003 Phys. Solid State 45 419

    [23]

    Liu Q L, Tanaka T, Hu J Q, Xu F F, Sekiguchi T 2003 Appl. Phys. Lett. 83 4939

    [24]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [25]

    Bae S Y, Seo H W, Park J, Yang H, Kim B 2003 Chem. Phys. Lett. 376 445

    [26]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [27]

    Scherrer P 1918 Göttinger Nachrichten Gesell. 2 98

    [28]

    Orton J W, Foxon C T 1998 Rep. Prog. Phys. 61 1

    [29]

    Asghar M, Hussain I, Saleemi F, Bustarret E, Cibert J, Kuroda S, Marcet S, Mariette H, Bhatti A S 2006 Mater. Sci. Eng. B 133 102

    [30]

    Chen C C, Yeh C C, Chen C H, Yu M. Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y, Chen Y F 2001 J. Am. Chem. Soc. 123 2791

    [31]

    Liu H L, Chen C C, Chia C T, Yeh C C, Chen C H, Yu M Y, Keller S, DenBaars S P 2001 Chem. Phys. Lett. 345 245

    [32]

    Gebicki W, Strzeszewski J, Kamler G, Szyszko T, Podsiadlo S 2000 Appl. Phys. Lett. 76 3870

    [33]

    Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A, Thomsen C 1997 Phys. Rev. B 55 7000

    [34]

    Limmer W, Ritter W, Sauer R, Mensching B, Liu C, Rauschenbach B 1998 Appl. Phys. Lett. 72 2589

    [35]

    Marco de Lucas M C, Fabreguette F, Linsavanh M, Imhoff L, Heintz O, Josse-Courty C, Mesnier M T, Potin V, Bourgeois S, Sacilotti M 2004 J. Cryst. Growth 261 324

    [36]

    Li H D, Zhang S L, Yang H B, Zou G T, Yang Y Y, Yue K T, Wu X H, Yan Y 2002 J. Appl. Phys. 91 4562

    [37]

    Ning J Q, Xu S J, Yu D P, Shan Y Y, Lee S T 2007 Appl. Phys. Lett. 91 103117

  • [1]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687

    [2]

    Wilson R G, Schwartz R N, Abernathy C R, Peartor S J, Newman N, Rubin M, Fu T, Zavada J M 1994 Appl. Phys. Lett. 65 992

    [3]

    Steckl A J, Birkhahn R 1998 Appl. Phys. Lett. 73 1700

    [4]

    Steckl A J, Zavada J M 1999 MRS Bull. 24 33

    [5]

    Steckl A J, Heinkenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y, Jones R 2002 IEEE J. Sel. Top. Quantum Electron. 8 749

    [6]

    Kim J H, Shepherd N, Davidson M, Holloway P H 2003 Appl. Phys. Lett. 83 641

    [7]

    Kim J H, Davidson M R, Holloway P H 2003 Appl. Phys. Lett. 83 4746

    [8]

    Kim J H, Holloway P H 2004 J. Appl. Phys. 95 4787

    [9]

    Pan X J, Zhang Z X, Jia L, Li H, Xie E Q 2008 J. Alloy. Compd. 458 579

    [10]

    Pan X J, Zhang Z X, Wang T, Li H, Xie E Q 2008 Acta Phys. Sin. 57 3786 (in Chinese) [潘孝军, 张振兴, 王涛, 李晖, 谢二庆 2008 物理学报 57 3786]

    [11]

    Xie Y, Qian Y T, Wang W Z, Zhang S Y, Zhang Y H 1996 Science 272 1926

    [12]

    Pan G Q, Kordesch M E, Patten P G 2006 Chem. Mater. 18 5392

    [13]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [14]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [15]

    Seong H K, Kim J Y, Kim J J, Lee S C, Kim S R, Kim U, Park T E, Choi H J 2007 Nano Lett. 7 3366

    [16]

    Cavallini A, Polenta L, Rossi M 2007 Nano Lett. 7 2166

    [17]

    Jacobs B W, Ayres V M, Petkov M P, Halpern J B, He M Q, Baczewski A D, McElroy K, Crimp M A, Zhang J M, Shaw H C 2007 Nano Lett. 7 1435

    [18]

    Wu H Q, Poitras C B, Lipson M, Spencer M G, Hunting J, DiSalvo F J 2006 Appl. Phys. Lett. 88 011921

    [19]

    Podhorodecki A, Nyk M, Misiewicz J, Strek W 2007 J. Lumin. 126 219

    [20]

    Podhorodecki A, Nyk M, Kudrawiec R, Misiewicz J, Strek W 2007 Electrochem. Solid-State Lett. 10 H88

    [21]

    Pan X J, An X Y, Zhang Z X, Zhou J Y, Xie E Q 2012 J. Alloy. Compd. 519 67

    [22]

    Andreev A A 2003 Phys. Solid State 45 419

    [23]

    Liu Q L, Tanaka T, Hu J Q, Xu F F, Sekiguchi T 2003 Appl. Phys. Lett. 83 4939

    [24]

    Jian J K, Chen X L, He M, Wang W J, Zhang X N, Shen F 2003 Chem. Phys. Lett. 368 416

    [25]

    Bae S Y, Seo H W, Park J, Yang H, Kim B 2003 Chem. Phys. Lett. 376 445

    [26]

    Lan Z H, Liang C H, Hsu C W, Wu C T, Lin H M, Dhara S, Chen K H, Chen L C, Chen C C 2004 Adv. Funct. Mater. 14 233

    [27]

    Scherrer P 1918 Göttinger Nachrichten Gesell. 2 98

    [28]

    Orton J W, Foxon C T 1998 Rep. Prog. Phys. 61 1

    [29]

    Asghar M, Hussain I, Saleemi F, Bustarret E, Cibert J, Kuroda S, Marcet S, Mariette H, Bhatti A S 2006 Mater. Sci. Eng. B 133 102

    [30]

    Chen C C, Yeh C C, Chen C H, Yu M. Y, Liu H L, Wu J J, Chen K H, Chen L C, Peng J Y, Chen Y F 2001 J. Am. Chem. Soc. 123 2791

    [31]

    Liu H L, Chen C C, Chia C T, Yeh C C, Chen C H, Yu M Y, Keller S, DenBaars S P 2001 Chem. Phys. Lett. 345 245

    [32]

    Gebicki W, Strzeszewski J, Kamler G, Szyszko T, Podsiadlo S 2000 Appl. Phys. Lett. 76 3870

    [33]

    Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A, Thomsen C 1997 Phys. Rev. B 55 7000

    [34]

    Limmer W, Ritter W, Sauer R, Mensching B, Liu C, Rauschenbach B 1998 Appl. Phys. Lett. 72 2589

    [35]

    Marco de Lucas M C, Fabreguette F, Linsavanh M, Imhoff L, Heintz O, Josse-Courty C, Mesnier M T, Potin V, Bourgeois S, Sacilotti M 2004 J. Cryst. Growth 261 324

    [36]

    Li H D, Zhang S L, Yang H B, Zou G T, Yang Y Y, Yue K T, Wu X H, Yan Y 2002 J. Appl. Phys. 91 4562

    [37]

    Ning J Q, Xu S J, Yu D P, Shan Y Y, Lee S T 2007 Appl. Phys. Lett. 91 103117

  • [1] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [2] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] Chen Zhen-Ni, Liu Sheng-Li, Wang Hai-Yun, Cheng Jie. Stress mechanism of Y1-xGdxBCO thin film with Gd substitution prepared by F-free metal organic deposition method. Acta Physica Sinica, 2017, 66(15): 156101. doi: 10.7498/aps.66.156101
    [4] Fan Zhi-Dong, Zhou Zi-Chun, Liu Chuo, Ma Lei, Peng Ying-Cai. Photoluminescence properties of Eu doped Si nanowires. Acta Physica Sinica, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [5] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [6] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [7] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [8] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [9] Li Hui-Feng, Gao Xiang-Xi, Huang Yun-Hua, Wang Jian, Zhang Yue, Zhao Jing. Fabrication and characterization of In-doped zinc oxide nanoarrays. Acta Physica Sinica, 2009, 58(4): 2702-2706. doi: 10.7498/aps.58.2702
    [10] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [11] Ma Hai-Lin, Su Qing, Lan Wei, Liu Xue-Qin. Influence of oxygen pressure on the structure and photoluminescence of β-Ga2O3 nano-material prepared by thermal evaporation. Acta Physica Sinica, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [12] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [13] Wang Fang-Zhen, Chen Zhang-Hai, Bai Li-Hui, Huang Shao-Hua, Shen Xue-Chu. The micro-photoluminescence and micro-Raman study of Zn1-xCdx Se quantum islands (dots) in CdSe/ZnSe heterostructure. Acta Physica Sinica, 2006, 55(5): 2628-2632. doi: 10.7498/aps.55.2628
    [14] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [15] Xu Da-Yin, Liu Yan-Ping, He Zhi-Wei, Fang Ze-Bo, Liu Xue-Qin, Wang Yin-Yue. The behavior of photoluminescence from SiC:Tb films deposited on porous silicon substrate. Acta Physica Sinica, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [16] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [17] Song Shu-Fang, Zhou Sheng-Qiang, Chen Wei-De, Zhu Jian-Jun, Chen Chang-Yong, Xu Zhen-Jia. RBS/channeling study and photoluminscence properties of Er-implanted GaN. Acta Physica Sinica, 2003, 52(10): 2558-2562. doi: 10.7498/aps.52.2558
    [18] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [19] LIANG ER-JUN, CHAO MING-JU. LASER-INDUCED LATTICE DEFORMATION OF POROUS SILICON REVEALED BY RAMAN AND PHOTOLUMINESCENCE SPECTROSCOPIES. Acta Physica Sinica, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
    [20] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
Metrics
  • Abstract views:  6252
  • PDF Downloads:  455
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2012
  • Accepted Date:  29 August 2012
  • Published Online:  05 February 2013

/

返回文章
返回