Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative characterization of viscoelasticity of microbubbles in ultrasound contrast agent

Guo Ge-Pu Zhang Chun-Bing Tu Juan Zhang Dong

Citation:

Quantitative characterization of viscoelasticity of microbubbles in ultrasound contrast agent

Guo Ge-Pu, Zhang Chun-Bing, Tu Juan, Zhang Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultrasound contrast agent (UCA) microbubbles have been commonly used in clinic to enhance the acoustic backscattering signals in ultrasound imaging diagnosis. With increasing demand for the continuous improvement of imaging resolution and sensitivity, new type UCAs (e.g., targeted microbubbles and multifunctional microbubbles) have attracted growing interest in both medical and scientific communities. Many efforts have been made to modify microbubble shell properties, which can strongly affect microbubble dynamic behaviors, so as to enable to create some new functionalities of UCAs. However, accurate characterization of the shell mechanical properties of UCAs has been recognized to be rather challenging. In previous work, microbubble’s mechanical properties are normally estimated by fitting measured dynamic response signals with coated-microbubble models. Inevitable uncertainty will be introduced in fitting results because there are more than one unknown shell parameters are adopted in these dynamic models. In the present paper, a comprehensive approach is developed to quantitatively characterize the visco-elasticity of the encapsulated microbubbles. By combining the techniques of atomic force microscopy (AFM), single particle optical sensing (SPOS), acoustic attenuation measurement, and the coated-bubble dynamics simulation, the size distribution, shell thickness, shell elasticity and viscosity of UCA microbubbles are determined one by one in sequence. To examine the validity of this approach, a kind of albumin-shelled microbubbles with diameters ranging from 1 to 5 μm are fabricated in our lab. Based on AFM technology, the microbubble effective shell stiffness and bulk elasticity modulus are measured to be 0.149±0.012 N/m and 8.31±0.667 MPa, respectively. It is noteworthy that the shell elastic property is shown to be independent of the initial size of microbubbles. Furthermore, the size distribution and acoustic attenuation measurements are also performed of these bubbles. Then, combined with microbubble dynamic model simulations, the UCA shell viscosity is calculated to be 0.374±0.003 Pa·s. Compared with previous estimation method, the current technology can be used as an effective tool to assess UCA shell visco-elasticity with improved accuracy and certainty. It is also shown that the feasibility to optimize the design and fabrication of UCAs can satisfy different requirements in ultrasound diagnostic and therapeutic applications.
    • Funds: Projects supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 81171659, 11374155, 11174141, 11104140, 11161120324), and the National High-Tech Research and Development Program (Grant No. 2012AA022702).
    [1]

    Zhang X J, Cheng Y Q, Li L J, Wang X R 2005 Chin. J. Med. Imaging Technol. 21 819

    [2]

    Stride E P, Coussios C C 2010 Proc. Inst. Mech. Eng. H 224 171

    [3]

    Ferrara K W, Borden M A, Zhang H 2009 Acc. Chem. Res. 42 881

    [4]

    Kennedy J E 2005 Nature Rev. Cancer 5 321

    [5]

    Ferrara K, Pollard R, Borden M 2007 Annu. Rev. Biomed Eng. 9 415

    [6]

    Zhang C B, Liu Z, Guo X S, Zhang D 2011 Chin. Phys. B 20 024301

    [7]

    Kennedy J E 2005 Nature Rev. Cancer 5 321

    [8]

    Lu M Z, Wan M X, Shi Y, Song Y C 2002 Acta Phys. Sin. 51 928 (in Chinese) [陆明珠, 万明习, 施雨, 宋延淳 2002 物理学报 51 928]

    [9]

    Liang J F, Chen W Z, Shao W H, Zhou C, Du L F, Jin L F 2013 Acta Phys. Sin. 62 084708 (in Chinese) [梁金福, 陈伟中, 邵纬航, 周超, 杜联芳, 金利芳 2013 物理学报 62 084708]

    [10]

    Chen Q, Zou X Y, Cheng J C 2006 Acta Phys. Sin. 55 6476 (in Chinese) [陈谦, 邹欣晔, 程建春 2006 物理学报 55 6476]

    [11]

    Hoff L, Sontum P C, Hovem J M 2000 J. Acoust. Soc. Am. 107 2272

    [12]

    Fouan D, Achaoui Y, Mensah S 2014 Appl. Phys. Lett. 104 114102

    [13]

    Sboros V, Moran C M, Pye S D, McDicken W N 2003 Ultrasound Med. Biol. 29 687

    [14]

    Chomas J E, Dayton P A, May D, Allen J, Klibanov A, Ferrara K 2000 Appl. Phys. Lett. 77 1056

    [15]

    Tu J, Guan J F, Qiu Y Y, Matula T J 2009 J. Acoust. Soc. Am. 126 2954

    [16]

    Sboros V, Glynos E, Pye S D, Moran C M, Butler M, Ross J A, Mcdicken V, Koutsos V 2007 Ultrasonics 46 349

    [17]

    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D 2005 J. Acoust. Soc. Am. 118 3499

    [18]

    Doinikov A A, Haac J F, Dayton P A 2009 Ultrasonics 49 269

    [19]

    Doinikov A A, Bouakaz A 2011 Ultrasoun. Ferro. Freq. Control 58 981

    [20]

    Liu K K 2006 J. Phys. D:Appl. Phys. 39 R189

    [21]

    Glynos, E, Koutsos, V, McDicken W N, Moran C M, Pye S D, Ross J A, Sboros V 2009 Langmuir 25 7514

    [22]

    Porter T R, Xie F, Kricsfeld A, Kilzer K 1995 J. Am. Col. Cardio. 26 33

    [23]

    de Jong N, Hoff L, Skotland T, Bom N 1992 Ultrasonics 30 95

    [24]

    Gorce J M, Schneider M 2000 Invest Radiol 35 661

    [25]

    Chen C C, Wu S Y, Finan J D, Morrison B, Konofagon E E 2013 IEEE Trans Ultrason Ferroelectr Freq Control 60 524

    [26]

    Doinilov A A, Haac J F, Dayton P A 2009 Ultrasonics 49 269

  • [1]

    Zhang X J, Cheng Y Q, Li L J, Wang X R 2005 Chin. J. Med. Imaging Technol. 21 819

    [2]

    Stride E P, Coussios C C 2010 Proc. Inst. Mech. Eng. H 224 171

    [3]

    Ferrara K W, Borden M A, Zhang H 2009 Acc. Chem. Res. 42 881

    [4]

    Kennedy J E 2005 Nature Rev. Cancer 5 321

    [5]

    Ferrara K, Pollard R, Borden M 2007 Annu. Rev. Biomed Eng. 9 415

    [6]

    Zhang C B, Liu Z, Guo X S, Zhang D 2011 Chin. Phys. B 20 024301

    [7]

    Kennedy J E 2005 Nature Rev. Cancer 5 321

    [8]

    Lu M Z, Wan M X, Shi Y, Song Y C 2002 Acta Phys. Sin. 51 928 (in Chinese) [陆明珠, 万明习, 施雨, 宋延淳 2002 物理学报 51 928]

    [9]

    Liang J F, Chen W Z, Shao W H, Zhou C, Du L F, Jin L F 2013 Acta Phys. Sin. 62 084708 (in Chinese) [梁金福, 陈伟中, 邵纬航, 周超, 杜联芳, 金利芳 2013 物理学报 62 084708]

    [10]

    Chen Q, Zou X Y, Cheng J C 2006 Acta Phys. Sin. 55 6476 (in Chinese) [陈谦, 邹欣晔, 程建春 2006 物理学报 55 6476]

    [11]

    Hoff L, Sontum P C, Hovem J M 2000 J. Acoust. Soc. Am. 107 2272

    [12]

    Fouan D, Achaoui Y, Mensah S 2014 Appl. Phys. Lett. 104 114102

    [13]

    Sboros V, Moran C M, Pye S D, McDicken W N 2003 Ultrasound Med. Biol. 29 687

    [14]

    Chomas J E, Dayton P A, May D, Allen J, Klibanov A, Ferrara K 2000 Appl. Phys. Lett. 77 1056

    [15]

    Tu J, Guan J F, Qiu Y Y, Matula T J 2009 J. Acoust. Soc. Am. 126 2954

    [16]

    Sboros V, Glynos E, Pye S D, Moran C M, Butler M, Ross J A, Mcdicken V, Koutsos V 2007 Ultrasonics 46 349

    [17]

    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D 2005 J. Acoust. Soc. Am. 118 3499

    [18]

    Doinikov A A, Haac J F, Dayton P A 2009 Ultrasonics 49 269

    [19]

    Doinikov A A, Bouakaz A 2011 Ultrasoun. Ferro. Freq. Control 58 981

    [20]

    Liu K K 2006 J. Phys. D:Appl. Phys. 39 R189

    [21]

    Glynos, E, Koutsos, V, McDicken W N, Moran C M, Pye S D, Ross J A, Sboros V 2009 Langmuir 25 7514

    [22]

    Porter T R, Xie F, Kricsfeld A, Kilzer K 1995 J. Am. Col. Cardio. 26 33

    [23]

    de Jong N, Hoff L, Skotland T, Bom N 1992 Ultrasonics 30 95

    [24]

    Gorce J M, Schneider M 2000 Invest Radiol 35 661

    [25]

    Chen C C, Wu S Y, Finan J D, Morrison B, Konofagon E E 2013 IEEE Trans Ultrason Ferroelectr Freq Control 60 524

    [26]

    Doinilov A A, Haac J F, Dayton P A 2009 Ultrasonics 49 269

  • [1] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] Yu Yi-Fei, Cao Yi. Evolution from dip-pen nanolithography to mechanochemical printing. Acta Physica Sinica, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [3] Chen Xing-Yuan, Huang Yao, Peng Yi-Tian. Tribological properties of suspended hexagonal boron nitride under electric field. Acta Physica Sinica, 2021, 70(16): 166801. doi: 10.7498/aps.70.20210386
    [4] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [5] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [6] Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei. Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Acta Physica Sinica, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [7] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [8] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [9] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [10] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [11] Xu Sheng-Rui, Zhang Jin-Cheng, Li Zhi-Ming, Zhou Xiao-Wei, Xu Zhi-Hao, Zhao Guang-Cai, Zhu Qing-Wei, Zhang Jin-Feng, Mao Wei, Hao Yue. The triangular pits eliminate of (1120) a-plane GaN growth by metal-orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [12] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Investigation of n-type GaN deposited on sapphire substrate with different small misorientations. Acta Physica Sinica, 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [13] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Improving the quantum well properties with n-type InGaN/GaN superlattices layer. Acta Physica Sinica, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [14] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [15] Enhanced luminescence of InGaN/GaN multiple quantum wells with indium doped GaN barriers. Acta Physica Sinica, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [16] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [19] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
    [20] QI DONG-PING, LIU DE-LI, TENG SHU-YUN, ZHANG NING-YU, CHENG CHUAN-FU. MORPHOLOGICAL ANALYSIS BY ATOMIC FORCE MICROSCOPE AND LIGHT SCATTERING STUDY FOR RANDOM SCATTERING SCREENS. Acta Physica Sinica, 2000, 49(7): 1260-1266. doi: 10.7498/aps.49.1260
Metrics
  • Abstract views:  5962
  • PDF Downloads:  237
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2014
  • Accepted Date:  23 November 2014
  • Published Online:  05 June 2015

/

返回文章
返回