Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A brief analysis of annealing process for electron-doped cuprate superconductors

Jia Yan-Li Yang Hua Yuan Jie Yu He-Shan Feng Zhong-Pei Xia Hai-Liang Shi Yu-Jun He Ge Hu Wei Long You-Wen Zhu Bei-Yi Jin Kui

Citation:

A brief analysis of annealing process for electron-doped cuprate superconductors

Jia Yan-Li, Yang Hua, Yuan Jie, Yu He-Shan, Feng Zhong-Pei, Xia Hai-Liang, Shi Yu-Jun, He Ge, Hu Wei, Long You-Wen, Zhu Bei-Yi, Jin Kui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The high-Tc copper-oxide superconductors (cuprates) break the limit of superconducting transition temperature predicted by the BCS theory based on electron-phonon coupling, and thus it opens a new chapter in the superconductivity field. According to the valence of substitutents, the cuprates could be categorized into electron-and hole-doped types. So far, an enormous number of high-Tc cuprate superconductors have been intensively studied, most of them are hole-doped. In comparison with the hole-doped cuprates, the advantages of electron-doped cuprates (e.g. lower upper critical field, less-debated origin of “pseudogap”, etc.) make this family of compounds more suitable for unveiling the ground states. However, the difficulties in sample syntheses prevent a profound research in last several decades, in which the role of annealing process during sample preparation has been a big challenge. In this review article, a brief comparison between the electron-doped cuprates and the hole-doped counterparts is made from the aspect of electronic phase diagram, so as to point out the necessity of intensive work on the electron-doped cuprates. Since the electronic properties are highly sensitive to the oxygen content of the sample, the annealing process in sample preparation, which varies the oxygen content, turns out to be a key issue in constructing the phase diagram. Meanwhile, the distinction between electron-and hole-doped cuprates is also manifested in their lattice structures. It has been approved that the stability of the superconducting phase of electron-doped cuprates depends on the tolerance factor t (affected by dopants) doping concentration, temperature, and oxygen position. Yet it is known that the annealing process can vary the oxygen content as well as its position, the details how to adjust oxygen remain unclear. Recently, the experiment on Pr2-xCexCuO4-δ suggests that the oxygen position can be tuned by pressure. And, our new results on [La1.9Ce0.1CuO4-δ/SrCoO3-δ]N superlattices indicate that more factors, like strain, should be taken into account. In addition, the superconductivity in the parent compounds of electron-doped cuprates has emerged by employing a so-called “protective annealing” process. Compared to the traditional one-step annealing process, this new procedure contains an extra annealing step at higher temperature at partial oxygen pressure. In consideration of the new discoveries, as well as the Tc enhancement observed in multilayered structures of electron-doped cuprates by traditional annealing, a promising explanation based on the idea of repairing the oxygen defects in copper oxide planes is proposed for the superconductivity in parent compounds. Finally, we expect a comprehensive understanding of the annealing process, especially the factors such as atmosphere, temperature, and strain, which are not only related to the sample quality, but also to a precise phase diagram of the electron-doped cuprates.
      Corresponding author: Jin Kui, kuijin@iphy.ac.cn
    • Funds: Project supported by the National Key Basic Research program of China (Grant No 2015CB921000) and the National Natural Science Foundation of China (Grant No 11474338)
    [1]

    Pomjakushina E 2014 Supercond. Sci. Technol. 27 120501

    [2]

    Onnes H K 1911 Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam 14 113

    [3]

    Schrieffer J R, Brooks J S, 2007 Handbook of high-temperature superconductivity (Springer Science+ Business Media, LLC)

    [4]

    Bednorz J G, Mller K A 1986 Z. Phys. B Con. Mat. 64 189

    [5]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J 1987 Science 235 567

    [6]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese) [赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘金湘, 陈庚华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177]

    [7]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908

    [8]

    Maeda H, Tanaka Y, Fukutomi M, Asano T 1988 Jpn. J. Appl. Phys. 27 L209

    [9]

    Sheng Z Z, Hermann A M 1988 Nature 332 55

    [10]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56

    [11]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [12]

    Tokura Y, Takagi H, Uchida S 1989 Nature 337 345

    [13]

    Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421

    [14]

    Jin K 2008 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [金魁 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [15]

    Witt T J 1988 Phys. Rev. Lett. 61 1423

    [16]

    Vanbentum P J M, Hoevers H F C, Vankempen H, Vandeleemput L E C, Denivelle M J M F, Schreurs L W M, Smokers R T M, Teunissen P A A 1988 Physica C 153 1718

    [17]

    Gammel P L, Polakos P A, Rice C E, Harriott L R, Bishop D J 1990 Phys. Rev. B 41 2593

    [18]

    Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855

    [19]

    Campuzano J C, Ding H, Norman M R, Randeira M, Bellman A F, Mochiku T, Kadowaki K 1996 Phys. Rev. B 53 14737

    [20]

    Takigawa M, Hammel P C, Heffner R H, Fisk Z 1989 Phys. Rev. B 39 7371

    [21]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [22]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969

    [23]

    Hardy W N, Bonn D A, Morgan D C, Liang R X, Zhang K 1993 Phys. Rev. Lett. 70 3999

    [24]

    Wright D A, Emerson J P, Woodfield B F, Gordon J E, Fisher R A, Phillips N E 1999 Phys. Rev. Lett. 82 1550

    [25]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [26]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [27]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [28]

    Norman M R 2011 Science 332 196

    [29]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [30]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [31]

    Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. 109 8440

    [32]

    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148

    [33]

    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 02235

    [34]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561

    [35]

    Taillefer L 2010 Annu. Rev. Cond. Matter Phys. 1 51

    [36]

    LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C, Taillefer L 2011 Phys. Rev. B 83 054506

    [37]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282

    [38]

    LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison J B, Hussey N E, Balicas L, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Adachi S, Proust C, Taillefer L 2007 Nature 450 533

    [39]

    Barisic N, Badoux S, Chan M K, Dorow C, Tabis W, Vignolle B, Yu G, Beard J, Zhao X, Proust C, Greven M 2013 Nat. Phys. 9 761

    [40]

    Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001

    [41]

    Helm T, Kartsovnik M V, Bartkowiak M, Bittner N, Lambacher M, Erb A, Wosnitza J, Gross R 2009 Phys. Rev. Lett. 103 157002

    [42]

    Helm T, Kartsovnik M V, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R 2010 Phys. Rev. Lett. 105 247002

    [43]

    Sebastian S E, Harrison N, Balakirev F F, Altarawneh M M, Goddard P A, Liang R X, Bonn D A, Hardy W N, Lonzarich G G 2014 Nature 511 61

    [44]

    Riggs S C, Vafek O, Kemper J B, Betts J B, Migliori A, Balakirev F F, Hardy W N, Liang R X, Bonn D A, Boebinger G S 2011 Nat. Phys. 7 332

    [45]

    Jiang W, Mao S, Xi X, Jiang X, Peng J, Venkatesan T, Lobb C, Greene R 1994 Phys. Rev. Lett. 73 1291

    [46]

    Lin J, Millis A J 2005 Phys. Rev. B 72 214506

    [47]

    Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524

    [48]

    Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2015 arXiv:1502.03395 cond-mat

    [49]

    Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337

    [50]

    Moriya T, Ueda K 2000 Adv. Phys. 49 555

    [51]

    Rosch A 2000 Phys. Rev. B 62 4945

    [52]

    Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K, Taillefer L 2009 Phys. Rev. B 80 214531

    [53]

    Taillefer L 2010 Annual Review of Condensed Matter Physics, Vol 1 51

    [54]

    Zhou W Z, Liang W Y 1999 Basic Research on High Temperature Superconductivity (Shanghai: Shanghai Science and Technology Publishers) [周午纵, 梁维耀 1999 高温超导基础研究 (上海: 上海科学技术出版社)]

    [55]

    Bringley J F, Trail S S, Scott B A 1990 J. Solid State Chem. 86 310

    [56]

    Manthiram A, Goodenough J B 1990 J. Solid State Chem. 87 402

    [57]

    Naito M, Hepp M 2000 Jpn. J. Appl. Phys. 39 L485

    [58]

    Naito M, Tsukada A, Greibe T, Sato H 2002 Superconducting and Related Oxides: Physics and Nanoengineering V 4811 140

    [59]

    Takayamamuromachi E, Uchida Y, Kato K 1990 Physica C 165 147

    [60]

    Yamada T, Kinoshita K, Shibata H 1994 Jpn. J. Appl. Phys. 33 L168

    [61]

    Oka K, Shibata H, Kashiwaya S, Eisaki H 2003 Physica C 388 389

    [62]

    Manthiram A, Goodenough J B 1991 J. Solid State Chem. 92 231

    [63]

    Kim J S, Gaskell D R 1993 Physica. C 209 381

    [64]

    Jiang W, Peng J L, Li Z Y, Greene R L 1993 Phys. Rev. B 47 8151

    [65]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Phys. Rev. B 80 094513

    [66]

    Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291

    [67]

    Higgins J S, Dagan Y, Barr M C, Weaver B D, Greene R L 2006 Phys. Rev. B 73 104510

    [68]

    Yu W, Higgins J S, Bach P, Greene R L 2007 Phys. Rev. B 76 020503

    [69]

    Kang H J, Dai P, Campbell B J, Chupas P J, Rosenkranz S, Lee P L, Huang Q, Li S, Komiya S, Ando Y 2007 Nature Mater. 6 224

    [70]

    Jin K, Yuan J, Zhao L, Wu H, Qi X, Zhu B, Cao L, Qiu X, Xu B, Duan X, Zhao B 2006 Phys. Rev. B 74 094518

    [71]

    Roberge G, Charpentier S, Godin-Proulx S, Rauwel P, Truong K D, Fournier P 2009 J. Cryst. Growth 311 1340

    [72]

    Xu X Q, Mao S N, Jiang W, Peng J L, Greene R L 1996 Phys. Rev. B 53 871

    [73]

    Radaelli P G, Jorgensen J D, Schultz A J, Peng J L, Greene R L 1994 Phys. Rev. B 49 15322

    [74]

    Schultz A J, Jorgensen J D, Peng J L, Greene R L 1996 Phys. Rev. B 53 5157

    [75]

    Rotundu C R, Struzhkin V V, Somayazulu M S, Sinogeikin S, Hemley R J, Greene R L 2013 Phys. Rev. B 87 024506

    [76]

    Riou G, Richard P, Jandl S, Poirier M, Fournier P, Nekvasil V, Barilo S N, Kurnevich L A 2004 Phys. Rev. B 69 024511

    [77]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Physical Review B 80 094513

    [78]

    Long Y W, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y 2011 J. Phys-condens. Mater. 23 245601

    [79]

    Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927

    [80]

    Kojima K M, Krockenberger Y, Yamauchi I, Miyazaki M, Hiraishi M, Koda A, Kadono R, Kumai R, Yamamoto H, Ikeda A, Naito M 2014 Phys. Rev. B 89 180508

    [81]

    Hord R, Luetkens H, Pascua G, Buckow A, Hofmann K, Krockenberger Y, Kurian J, Maeter H, Klauss H H, Pomjakushin V, Suter A, Albert B, Alff L 2010 Phys. Rev. B 82 180508(R)

    [82]

    Weber C, Haule K, Kotliar G 2010 Nat. Phys. 6 574

    [83]

    Sawa A, Kawasaki M, Takagi H, Tokura Y 2002 Phys. Rev. B 66 014531

    [84]

    Jin K, Bach P, Zhang X H, Grupel U, Zohar E, Diamant I, Dagan Y, Smadici S, Abbamonte P, Greene R L 2011 Phys. Rev. B 83 060511

    [85]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782

  • [1]

    Pomjakushina E 2014 Supercond. Sci. Technol. 27 120501

    [2]

    Onnes H K 1911 Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam 14 113

    [3]

    Schrieffer J R, Brooks J S, 2007 Handbook of high-temperature superconductivity (Springer Science+ Business Media, LLC)

    [4]

    Bednorz J G, Mller K A 1986 Z. Phys. B Con. Mat. 64 189

    [5]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J 1987 Science 235 567

    [6]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese) [赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘金湘, 陈庚华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177]

    [7]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908

    [8]

    Maeda H, Tanaka Y, Fukutomi M, Asano T 1988 Jpn. J. Appl. Phys. 27 L209

    [9]

    Sheng Z Z, Hermann A M 1988 Nature 332 55

    [10]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56

    [11]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [12]

    Tokura Y, Takagi H, Uchida S 1989 Nature 337 345

    [13]

    Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421

    [14]

    Jin K 2008 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [金魁 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [15]

    Witt T J 1988 Phys. Rev. Lett. 61 1423

    [16]

    Vanbentum P J M, Hoevers H F C, Vankempen H, Vandeleemput L E C, Denivelle M J M F, Schreurs L W M, Smokers R T M, Teunissen P A A 1988 Physica C 153 1718

    [17]

    Gammel P L, Polakos P A, Rice C E, Harriott L R, Bishop D J 1990 Phys. Rev. B 41 2593

    [18]

    Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855

    [19]

    Campuzano J C, Ding H, Norman M R, Randeira M, Bellman A F, Mochiku T, Kadowaki K 1996 Phys. Rev. B 53 14737

    [20]

    Takigawa M, Hammel P C, Heffner R H, Fisk Z 1989 Phys. Rev. B 39 7371

    [21]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [22]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969

    [23]

    Hardy W N, Bonn D A, Morgan D C, Liang R X, Zhang K 1993 Phys. Rev. Lett. 70 3999

    [24]

    Wright D A, Emerson J P, Woodfield B F, Gordon J E, Fisher R A, Phillips N E 1999 Phys. Rev. Lett. 82 1550

    [25]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [26]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [27]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [28]

    Norman M R 2011 Science 332 196

    [29]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [30]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [31]

    Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. 109 8440

    [32]

    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148

    [33]

    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 02235

    [34]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561

    [35]

    Taillefer L 2010 Annu. Rev. Cond. Matter Phys. 1 51

    [36]

    LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C, Taillefer L 2011 Phys. Rev. B 83 054506

    [37]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282

    [38]

    LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison J B, Hussey N E, Balicas L, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Adachi S, Proust C, Taillefer L 2007 Nature 450 533

    [39]

    Barisic N, Badoux S, Chan M K, Dorow C, Tabis W, Vignolle B, Yu G, Beard J, Zhao X, Proust C, Greven M 2013 Nat. Phys. 9 761

    [40]

    Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001

    [41]

    Helm T, Kartsovnik M V, Bartkowiak M, Bittner N, Lambacher M, Erb A, Wosnitza J, Gross R 2009 Phys. Rev. Lett. 103 157002

    [42]

    Helm T, Kartsovnik M V, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R 2010 Phys. Rev. Lett. 105 247002

    [43]

    Sebastian S E, Harrison N, Balakirev F F, Altarawneh M M, Goddard P A, Liang R X, Bonn D A, Hardy W N, Lonzarich G G 2014 Nature 511 61

    [44]

    Riggs S C, Vafek O, Kemper J B, Betts J B, Migliori A, Balakirev F F, Hardy W N, Liang R X, Bonn D A, Boebinger G S 2011 Nat. Phys. 7 332

    [45]

    Jiang W, Mao S, Xi X, Jiang X, Peng J, Venkatesan T, Lobb C, Greene R 1994 Phys. Rev. Lett. 73 1291

    [46]

    Lin J, Millis A J 2005 Phys. Rev. B 72 214506

    [47]

    Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524

    [48]

    Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2015 arXiv:1502.03395 cond-mat

    [49]

    Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337

    [50]

    Moriya T, Ueda K 2000 Adv. Phys. 49 555

    [51]

    Rosch A 2000 Phys. Rev. B 62 4945

    [52]

    Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K, Taillefer L 2009 Phys. Rev. B 80 214531

    [53]

    Taillefer L 2010 Annual Review of Condensed Matter Physics, Vol 1 51

    [54]

    Zhou W Z, Liang W Y 1999 Basic Research on High Temperature Superconductivity (Shanghai: Shanghai Science and Technology Publishers) [周午纵, 梁维耀 1999 高温超导基础研究 (上海: 上海科学技术出版社)]

    [55]

    Bringley J F, Trail S S, Scott B A 1990 J. Solid State Chem. 86 310

    [56]

    Manthiram A, Goodenough J B 1990 J. Solid State Chem. 87 402

    [57]

    Naito M, Hepp M 2000 Jpn. J. Appl. Phys. 39 L485

    [58]

    Naito M, Tsukada A, Greibe T, Sato H 2002 Superconducting and Related Oxides: Physics and Nanoengineering V 4811 140

    [59]

    Takayamamuromachi E, Uchida Y, Kato K 1990 Physica C 165 147

    [60]

    Yamada T, Kinoshita K, Shibata H 1994 Jpn. J. Appl. Phys. 33 L168

    [61]

    Oka K, Shibata H, Kashiwaya S, Eisaki H 2003 Physica C 388 389

    [62]

    Manthiram A, Goodenough J B 1991 J. Solid State Chem. 92 231

    [63]

    Kim J S, Gaskell D R 1993 Physica. C 209 381

    [64]

    Jiang W, Peng J L, Li Z Y, Greene R L 1993 Phys. Rev. B 47 8151

    [65]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Phys. Rev. B 80 094513

    [66]

    Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291

    [67]

    Higgins J S, Dagan Y, Barr M C, Weaver B D, Greene R L 2006 Phys. Rev. B 73 104510

    [68]

    Yu W, Higgins J S, Bach P, Greene R L 2007 Phys. Rev. B 76 020503

    [69]

    Kang H J, Dai P, Campbell B J, Chupas P J, Rosenkranz S, Lee P L, Huang Q, Li S, Komiya S, Ando Y 2007 Nature Mater. 6 224

    [70]

    Jin K, Yuan J, Zhao L, Wu H, Qi X, Zhu B, Cao L, Qiu X, Xu B, Duan X, Zhao B 2006 Phys. Rev. B 74 094518

    [71]

    Roberge G, Charpentier S, Godin-Proulx S, Rauwel P, Truong K D, Fournier P 2009 J. Cryst. Growth 311 1340

    [72]

    Xu X Q, Mao S N, Jiang W, Peng J L, Greene R L 1996 Phys. Rev. B 53 871

    [73]

    Radaelli P G, Jorgensen J D, Schultz A J, Peng J L, Greene R L 1994 Phys. Rev. B 49 15322

    [74]

    Schultz A J, Jorgensen J D, Peng J L, Greene R L 1996 Phys. Rev. B 53 5157

    [75]

    Rotundu C R, Struzhkin V V, Somayazulu M S, Sinogeikin S, Hemley R J, Greene R L 2013 Phys. Rev. B 87 024506

    [76]

    Riou G, Richard P, Jandl S, Poirier M, Fournier P, Nekvasil V, Barilo S N, Kurnevich L A 2004 Phys. Rev. B 69 024511

    [77]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Physical Review B 80 094513

    [78]

    Long Y W, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y 2011 J. Phys-condens. Mater. 23 245601

    [79]

    Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927

    [80]

    Kojima K M, Krockenberger Y, Yamauchi I, Miyazaki M, Hiraishi M, Koda A, Kadono R, Kumai R, Yamamoto H, Ikeda A, Naito M 2014 Phys. Rev. B 89 180508

    [81]

    Hord R, Luetkens H, Pascua G, Buckow A, Hofmann K, Krockenberger Y, Kurian J, Maeter H, Klauss H H, Pomjakushin V, Suter A, Albert B, Alff L 2010 Phys. Rev. B 82 180508(R)

    [82]

    Weber C, Haule K, Kotliar G 2010 Nat. Phys. 6 574

    [83]

    Sawa A, Kawasaki M, Takagi H, Tokura Y 2002 Phys. Rev. B 66 014531

    [84]

    Jin K, Bach P, Zhang X H, Grupel U, Zohar E, Diamant I, Dagan Y, Smadici S, Abbamonte P, Greene R L 2011 Phys. Rev. B 83 060511

    [85]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782

  • [1] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [2] Wen Hai-Hu. Brief introduction to flux pinning and vortex dynamics in high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] Jin Kui, Wu Jie. Combinatorial film and high-throughput characterization methods of phase diagram for high-Tc superconductors. Acta Physica Sinica, 2021, 70(1): 017403. doi: 10.7498/aps.70.20202102
    [4] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [5] Xu Da-Qing, Zhang Yi-Men, Lou Yong-Le, Tong Jun. Influences of post-heat treatment on microstructures, optical and magnetic properties of unintentionally doped GaN epilayers implanted with Mn ions. Acta Physica Sinica, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [6] Zhang Bin, Wang Wei-Li, Niu Qiao-Li, Zou Xian-Shao, Dong Jun, Zhang Yong. Effects of annealing in H2 atomsphere on optoelectronical properties of Nb-doped TiO2 thin films. Acta Physica Sinica, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [7] Zhu Jian-Yun, Liu Lu, Li Yu-Qiang, Xu Jing-Ping. Effect of annealing atmosphere on characteristics of MONOS with LaTiON or HfLaON as charge storage layer. Acta Physica Sinica, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [8] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [9] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [10] Hu Mei-Jiao, Li Cheng, Xu Jian-Fang, Lai Hong-Kai, Chen Song-Yan. Formation and properties of GeOI prepared by cyclic thermal oxidation and annealing processes. Acta Physica Sinica, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [11] Yue Hong-Wei, Yan Shao-Lin, Zhou Tie-Ge, Xie Qing-Lian, You Feng, Wang Zheng, He Ming, Zhao Xin-Jie, Fang Lan, Yang Yang, Wang Fu-Yin, Tao Wei-Wei. Millimeter wave irradiation characteristics of high temperature superconductor bicrystal Josephson junction embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [12] Yue Hong-Wei, Wang Zheng, Fan Bin, Song Feng-Bin, You Feng, Zhao Xin-Jie, He Ming, Fang Lan, Yan Shao-Lin. Millimeter wavelength coherent emission from high temperature superconducting bicrystal Josephson junction array. Acta Physica Sinica, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [13] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [14] Wu Shi-Liang, Chen Ye-Qing, Wu Yi-Chu, Wang Shao-Jie, Wen Xi-Yu, Zhai Tong-Guang. Positron annihilation study of hot band of a continuous cast AA 2037 Al alloy after annealing. Acta Physica Sinica, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [15] Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Influence of annealing temperature on the microstructure and photoluminescence of ZnO films. Acta Physica Sinica, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [16] Fang Ze-Bo, Gong Heng-Xiang, Liu Xue-Qin, Xu Da-Yin, Huang Chun-Ming, Wang Yin-Yue. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [17] Chen Ying-Fei, Peng Wei, Li Jie, Chen Ke, Zhu Xiao-Hong, Wang Ping, Zeng Guang, Zheng Dong-Ning, Li Lin. In-situ monitoring of the growth of oxide thin films in PLD using high-pressure reflection high energy electron diffraction. Acta Physica Sinica, 2003, 52(10): 2601-2606. doi: 10.7498/aps.52.2601
    [18] WANG YONG-QIAN, CHEN CHANG-YONG, CHEN WEI-DE, YANG FU-HUA, DIAO HONG-WEI, XU ZHEN-JIA, ZHANG SHI-BIN, KONG GUANG-LIN, LIAO XIAN-BO. THE MICROSTRUCTURE AND ITS HIGH-TEMPERATURE ANNEALING BEHAVIOURS OF a-Si∶O∶H FILM. Acta Physica Sinica, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [19] LI HONG-CHENG, WANG RUI-LAN, WEI BIN. ERROR ANALYSIS FOR MEASUREMENTS OF MICROWAVE SURFACE RESISTANCE OF HIGH-TEMPERATURE SUPERCONDUCTORS BY DIELECTRIC RESONATOR METHOD . Acta Physica Sinica, 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  8223
  • PDF Downloads:  391
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2015
  • Accepted Date:  06 May 2015
  • Published Online:  05 November 2015

/

返回文章
返回