Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma distribution properties of vacuum ribbon-like cathodic arc plasma fliter and Raman studies of diamond-like carbon films perpared by it

Li Liu-He Liu Hong-Tao Luo Ji Xu Yi

Citation:

Plasma distribution properties of vacuum ribbon-like cathodic arc plasma fliter and Raman studies of diamond-like carbon films perpared by it

Li Liu-He, Liu Hong-Tao, Luo Ji, Xu Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As is well known, most filtered cathodic vacuum arc deposition technology adopts filters with various geometries to remove macro particles in the last three decades, but almost all of them have a circular cross-section. Compared with the traditional toroidal duct filters, the rectangular graphite cathodic arc source can have a larger area which can be an arc source of a ribbon-like cathodic arc plasma filter, which has a higher coating efficiency due to its larger area arc source and may be more suitable for a larger scale industrial production. Thus, the research on the plasma distribution properties within the vacuum ribbon-like cathodic arc plasma filter is of great significance. In this paper, a rectangular graphite cathodic arc source is used to produce the ribbon-like cathodic arc plasma. Within the filter, a 90 curved magnetic duct with a rectangular cross-section is used as the arc filter. The ribbon-like cathodic arc plasma is transmitted from cathode to the deposition area along the magnetic line produced by external coils. A Faraday cup ion energy analyzer and a Langmuir probe are used to characterize the distribution properties of the filtered plasma at 15 places on the exit plane. Ion energies and ion density at these positions are obtained. For the special retrograde motion of the cathode spot on the rectangular target surface, the ion energies and ion density data are not stable. In order to obtain representative values, the net results are the average value of 3 measurements. Diamond-like carbon (DLC) films are deposited by the ribbon-like cathodic arc plasma filter at the same exit plane and their structures are characterized by Raman shift. To compare the distinctness of the 15 Raman spectrums, each Raman spectrum of the DLC films is normalized and shown in a figure. Meanwhile, the thicknesses of all the DLC films are measured by step profiler. Results show that the ion energies are of Maxwell distributions at all the 15 places on the exit plane. The ion energies vary from 0 to 60 eV, most being in the range from 20 to 30 eV. The arc voltage is 30 eV, which exactly coincides with the ion energies. While Raman spectra of the DLC films show an obvious correspondence relationship with the ion energies as well as the ion density and the DLC film thickness. The nano-hardness of the DLC films lies in a range of 25-43 GPa. Although the ion energies, ion density, DLC film thickness and nano-hardness are slightly different at different locations, they are not significant. Owing to the relatively evenly distributed properties of the ribbon-like arc plasma this may open great opportunities for a large area filtered arc deposition technique.
      Corresponding author: Li Liu-He, liliuhe@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275020), and the National High Technology Research and Development Program of China (Grant No. 2014zx04012012).
    [1]

    Aksenov I I, Belous V A, Padalka V G, Khoroshikh V M 1978 Sov. J. Plasma Phys. 4 425

    [2]

    Bilek M M M, Yin Y, Mckenzie D R 1996 IEEE Trans. Plasma Sci. 24 1165

    [3]

    Boxman R L, Goldsmith S, Ben-Shalom A, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis I I 1995 IEEE Trans. Plasma Sci. 23 939

    [4]

    Anders A, Anders S, Brown I G 1994 J. Appl. Phys. 75 4900

    [5]

    Shi X, Tay B K, Lau S P 2012 Int. J. Mod. Phys. B 14 136

    [6]

    Yuvakkumar R, Peranantham P, Nathanael A J, Nataraj D, Mangalaraj D, Sun I H, Peranantham P, Nataraj D 2015 J. Nanosci. Nanotechnol. 15 2523

    [7]

    Wang N, Komvopoulos K 2013 J. Mater. Res. 28 2124

    [8]

    Diaz B, Swiatowska J, Maurice V, Seyeux A, Harkonen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P 2013 Electrochim. Acta 90 232

    [9]

    Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 物理学报 60 046802]

    [10]

    Wen F, Huang N, Jing F J, Sun H, Cao Y 2011 Adv. Mater. Res. 287 2203

    [11]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2008 Surf. Coat. Technol. 203 887

    [12]

    Xue Q J, Wang L P 2012 Diamond-like Carbon Films Material (Beijing: Science Press) pp40-47 (in Chinese) [薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第 40-47 页]

    [13]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284

    [14]

    Xu Z, Sun H, Leng Y X, Li X, Yang W, Huang N 2015 Appl. Surf. Sci. 328 319

    [15]

    Xu S, Flynn D, Tay B K, Prawer S, Nugent K W, Silva S R P, Lifshitz Y, Milne W I 1997 Philos. Mag. B 76 351

    [16]

    Choi J, Kato T 2003 J. Appl. Phys. 93 8722

    [17]

    Liu A P, Liu M, Yu J C, Qian G D, Tang W H 2015 Chin. Phys. B 24 056804

    [18]

    Bilek M M M, Mckenzie D R, Yin Y, Chhowalla M U, Milne W I 1996 IEEE Trans. Plasma Sci. 24 1291

    [19]

    Li L H, Xia L F, Ma X X, Sun Y, Li G, Yu W D 1999 Chin. J. Vac. Sci. Technol. 3 207 (in Chinese) [李刘合, 夏立芳, 马欣新, 孙跃, 李光, 于伟东 1999 真空科学与技术学报 3 207]

    [20]

    Xu S, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Milne W I 1996 J. Appl. Phys. 79 7234

    [21]

    Sun P, Hu M, Zhang F, Ji Y Q, Liu H S, Liu D D, Leng J 2015 Chin. Phys. B 24 067803

    [22]

    Zavaleyev V, Walkowicz J 2015 Thin Solid Films 581 32

    [23]

    Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Second Edition) (Hoboken: John Wiley Sons, Inc.) pp185-186

    [24]

    D L Tang, R K Y Fu, X B Tian, P Peng, P K Chu 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 808

    [25]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061

    [26]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [27]

    Yang F Z, Shen L R, Wang S Q, Tang D L, Jin F Y, Liu H F 2013 Acta Phys. Sin. 62 017802 (in Chinese) [杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰 2013 物理学报 62 017802]

  • [1]

    Aksenov I I, Belous V A, Padalka V G, Khoroshikh V M 1978 Sov. J. Plasma Phys. 4 425

    [2]

    Bilek M M M, Yin Y, Mckenzie D R 1996 IEEE Trans. Plasma Sci. 24 1165

    [3]

    Boxman R L, Goldsmith S, Ben-Shalom A, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis I I 1995 IEEE Trans. Plasma Sci. 23 939

    [4]

    Anders A, Anders S, Brown I G 1994 J. Appl. Phys. 75 4900

    [5]

    Shi X, Tay B K, Lau S P 2012 Int. J. Mod. Phys. B 14 136

    [6]

    Yuvakkumar R, Peranantham P, Nathanael A J, Nataraj D, Mangalaraj D, Sun I H, Peranantham P, Nataraj D 2015 J. Nanosci. Nanotechnol. 15 2523

    [7]

    Wang N, Komvopoulos K 2013 J. Mater. Res. 28 2124

    [8]

    Diaz B, Swiatowska J, Maurice V, Seyeux A, Harkonen E, Ritala M, Tervakangas S, Kolehmainen J, Marcus P 2013 Electrochim. Acta 90 232

    [9]

    Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 物理学报 60 046802]

    [10]

    Wen F, Huang N, Jing F J, Sun H, Cao Y 2011 Adv. Mater. Res. 287 2203

    [11]

    Li L H, Lu Q Y, Fu R K Y, Chu P K 2008 Surf. Coat. Technol. 203 887

    [12]

    Xue Q J, Wang L P 2012 Diamond-like Carbon Films Material (Beijing: Science Press) pp40-47 (in Chinese) [薛群基, 王立平 2012 类金刚石碳基薄膜材料 (北京: 科学出版社) 第 40-47 页]

    [13]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284

    [14]

    Xu Z, Sun H, Leng Y X, Li X, Yang W, Huang N 2015 Appl. Surf. Sci. 328 319

    [15]

    Xu S, Flynn D, Tay B K, Prawer S, Nugent K W, Silva S R P, Lifshitz Y, Milne W I 1997 Philos. Mag. B 76 351

    [16]

    Choi J, Kato T 2003 J. Appl. Phys. 93 8722

    [17]

    Liu A P, Liu M, Yu J C, Qian G D, Tang W H 2015 Chin. Phys. B 24 056804

    [18]

    Bilek M M M, Mckenzie D R, Yin Y, Chhowalla M U, Milne W I 1996 IEEE Trans. Plasma Sci. 24 1291

    [19]

    Li L H, Xia L F, Ma X X, Sun Y, Li G, Yu W D 1999 Chin. J. Vac. Sci. Technol. 3 207 (in Chinese) [李刘合, 夏立芳, 马欣新, 孙跃, 李光, 于伟东 1999 真空科学与技术学报 3 207]

    [20]

    Xu S, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Milne W I 1996 J. Appl. Phys. 79 7234

    [21]

    Sun P, Hu M, Zhang F, Ji Y Q, Liu H S, Liu D D, Leng J 2015 Chin. Phys. B 24 067803

    [22]

    Zavaleyev V, Walkowicz J 2015 Thin Solid Films 581 32

    [23]

    Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Second Edition) (Hoboken: John Wiley Sons, Inc.) pp185-186

    [24]

    D L Tang, R K Y Fu, X B Tian, P Peng, P K Chu 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 206 808

    [25]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061

    [26]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [27]

    Yang F Z, Shen L R, Wang S Q, Tang D L, Jin F Y, Liu H F 2013 Acta Phys. Sin. 62 017802 (in Chinese) [杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰 2013 物理学报 62 017802]

  • [1] Lu Yi-Min, Wang Yu-Jie, Xu Man-Man, Wang Hai, Xi Lin. Micro-structural and optical properties of diamond-like carbon films grown by magnetic field-assisted laser deposition. Acta Physica Sinica, 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas. Acta Physica Sinica, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [4] Wang Di, Zhang De-Ming, Zhang Ji, Wang Xiao-Fei, Zhang Qin-Li, Wan Song-Ming, Yin Shao-Tang. The influence of alkali metal ions on crystallization habits of nonlinear optical crystal containing [B3O7] groups. Acta Physica Sinica, 2013, 62(15): 154203. doi: 10.7498/aps.62.154203
    [5] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [6] Yang Tian-Yong, Kong Chun-Yang, Ruan Hai-Bo, Qin Guo-Ping, Li Wan-Jun, Liang Wei-Wei, Meng Xiang-Dan, Zhao Yong-Hong, Fang Liang, Cui Yu-Ting. Study on the p-type conductivities and Raman scattering properties of N+ ion-implanted O-rich ZnO thin films. Acta Physica Sinica, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [7] Yang Fa-Zhan, Shen Li-Ru, Wang Shi-Qing, Tang De-Li, Jin Fa-Ya, Liu Hai-Feng. UV Raman and XPS studies of hydrogenous diamond-like carbon films prepared by PECVD. Acta Physica Sinica, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [8] Wang Jing, Liu Gui-Chang, Li Hong-Ling, Hou Bao-Rong. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate. Acta Physica Sinica, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [9] Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin. Raman investigation of ion-implanted ZnO films. Acta Physica Sinica, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [10] Zhang Hong-Hua, Zhang Chong-Hong, Li Bing-Sheng, Zhou Li-Hong, Yang Yi-Tao, Fu Yun-Chong. Optical properties revealing annealing behavior of high-temperature He-implantation induced defects in silicon carbide. Acta Physica Sinica, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [11] Zhao Dong-Cai, Ren Ni, Ma Zhan-Ji, Qiu Jia-Wen, Xiao Geng-Jie, Wu Sheng-Hu. Study on the mechanical properties of diamond like carbon films with Si doping. Acta Physica Sinica, 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [12] Ma Guo-Jia, Liu Xi-Liang, Zhang Hua-Fang, Wu Hong-Chen, Peng Li-Ping, Jiang Yan-Li. Influences of acetylene gas flow rate on mechanical properties and chemical structure of nanocomposite TiC diamond-like carbon films. Acta Physica Sinica, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [13] Wang Jing, Liu Gui-Chang, Ji Da-Peng, Xu Jun, Deng Xin-Lu. Diamond-like carbon (DLC) films deposited on copper substrate through preparation of intermediate layers. Acta Physica Sinica, 2006, 55(7): 3748-3755. doi: 10.7498/aps.55.3748
    [14] Liu Yan-Hong, Zhang Jia-Liang, Wang Wei-Guo, Li Jian, Liu Dong-Ping, Ma Teng-Cai. Deposition of diamond-like carbon and analysis of ion energy in CH4 or CH4+Ar dielectric barrier discharge plasma. Acta Physica Sinica, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [15] Gao Peng, Xu Jun, Deng Xin-Lu, Wang De-He, Dong Chuang. Structure and tribology properties of diamond-like carbon films prepared by microwave electron cyclotron resonance plasma source ion implantation. Acta Physica Sinica, 2005, 54(7): 3241-3246. doi: 10.7498/aps.54.3241
    [16] Peng Hong-Yan, Zhou Chuan-Sheng, Zhao Li-Xin, Jin Zeng-Sun, Zhang Bing, Chen Bao-Ling, Chen Yu-Qiang, Li Min-Jun. Effect of the laser power density on the properties and structures of the diamond-like carbon films deposited by pulsed laser ablation of graphite. Acta Physica Sinica, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [17] Yang Wu-Bao, Fan Song-Hua, Zhang Gu-Ling, Ma Pei-Ning, Zhang Shou-Zhong, Du Jian. Investigation of diamond-like-carbon films prepared by unbalanced magnetron sputtering. Acta Physica Sinica, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [18] Li Zhi-Jie, Pan Zheng-Ying, Zhu Jing, Wei Qi, Wang Yue-Xia, Zang Liang-Kun, Zhou Liang, Liu Ti-Jiang. Simulations of the structure characteristic of diamond-like carbon films formed by ion-beam-assisted deposition. Acta Physica Sinica, 2005, 54(5): 2233-2238. doi: 10.7498/aps.54.2233
    [19] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [20] Yang Wu-Bao, Fan Song-Hua, Liu Chi-Zi, Zhang Gu-Ling, Wang Jiu-Li, Yang Si-Ze. Investigation of diamond-like-carbon films deposited on glass substrate by using a pulsed high energy density plasma gun. Acta Physica Sinica, 2003, 52(1): 140-144. doi: 10.7498/aps.52.140
Metrics
  • Abstract views:  5936
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2015
  • Accepted Date:  24 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回