Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone

Li Xue-Mei Yu Yu-Ying Tan Ye Hu Chang-Ming Zhang Zu-Gen Lan Qiang Fu Qiu-Wei Jing Hai-Hua

Citation:

Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone

Li Xue-Mei, Yu Yu-Ying, Tan Ye, Hu Chang-Ming, Zhang Zu-Gen, Lan Qiang, Fu Qiu-Wei, Jing Hai-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polymorphic phase transformation and melting under shock wave loading are important for studying the material dynamic mechanical behavior and equation of state in condensed matter physics. In this paper, the accurate Hugoniot parameter and sound velocity of shocked pure bismuth (Bi) in a pressure range of 17.3-28.3 GPa are obtained by using flyer impact method and rarefaction overtaking technique, respectively, and the sound velocity softening trend in shock-induced melting zone and the melting kinetics of Bi are then analyzed. In each experiment, six Bi samples with different thickness values are affected by oxygen-free-high-conducticity copper flyer fired through power gun. Shock wave velocity and particle velocity in Bi are experimentally determined through measuring the impact velocity and shock wave time in the thickest sample by photon Doppler velocimetry (PDV) technique. The velocity profiles on each interface between Bi and lithium fluoride (LiF) window are measured by displacement interferometer system of any reflector (DISAR), and then the sound velocity of shocked Bi is determined using the rarefaction overtaking method. The analyses of our results show that the softening of sound velocity of Bi approximatively satisfies the linear relation of Cs=3.682-0.015 p in the solid-liquid coexistence zone, and the pressure zone of the solid-liquid coexistence phase is further affirmed to be in a range of 18-27.4 GPa. Additionally, the obtained Hugoniot data for Bi in this paper supply a gap in the pressure zone of solid-liquid mixing phase. The quadratic equation with the expression of Ds=0.401+ 3.879 up-0.876 up2 can better demonstrate the relation between shock wave velocity and particle velocity than a linear one when the particle velocity lies in a range of 0.5-1.0 km/s, and this non-linear property maybe has a relationship with the shock-induced melting of Bi. Finally, our wave profile measurement of the Bi/LiF interface shows peculiar ramp characteristics in the expected velocity plateau zone in the pressure zone of solid-liquid coexistence phase, which may be associated with both the nonhomogeneous melting kinetics and the long time scale of melting for bismuth.
      Corresponding author: Li Xue-Mei, lixuem@caep.cn
    • Funds: Project supported by the Foundation of China Academy of Engineering Physics (Grant No. 2015B010106).
    [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Larson D B 1967 J. Appl. Phys. 38 1541

    [3]

    Romain J P 1974 J. Appl. Phys. 45 135

    [4]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [5]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701

    [6]

    Colvin J D, Reed B W, Jankowski A F, Kumar M, Paisley D L, Swift D C, Tierney T E, Frank A M 2007 J. Appl. Phys. 101 084906

    [7]

    Gorman M G, Briggs R, McBrid E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701

    [8]

    Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109

    [9]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Wu Q, Tan H 2014 Appl. Phys. Lett. 105 201910

    [10]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [11]

    Song P, Cai L C, Tao T J, Yuan S, Chen H, Huang J, Zhao X W, Wang X J 2016 J. Appl. Phys. 120 195101

    [12]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese)[谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔 2011 物理学报 60 106401]

    [13]

    Tan Y, Yu Y Y, Dai C D, Jin K, Wang Q S, Hu J B, Tan H 2013 J. Appl. Phys. 113 093509

    [14]

    Weng J D, Tan H, Hu S L, Ma Y, Wang X 2005 Sci. Instrum Rev. 76 093301

    [15]

    Jin F Q 1999 Introduction to Experimental Equation of State (2th Ed.) (Beijing:Science Press) p200 (in Chinese)[经福谦 1999 实验物态方程导引(第二版) (北京:科学出版社) 第200页]

    [16]

    Jensen B J, Holtkamp D B, Rigg P A, Dolan D H 2007 J. Appl. Phys. 101 013523

    [17]

    Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363

    [18]

    Marsh S P 1981 LASL Shock Hugoniot Data (California:University of California Press) p23

    [19]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [20]

    Hayes D B 1975 J. Appl. Phys. 46 3438

  • [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Larson D B 1967 J. Appl. Phys. 38 1541

    [3]

    Romain J P 1974 J. Appl. Phys. 45 135

    [4]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [5]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701

    [6]

    Colvin J D, Reed B W, Jankowski A F, Kumar M, Paisley D L, Swift D C, Tierney T E, Frank A M 2007 J. Appl. Phys. 101 084906

    [7]

    Gorman M G, Briggs R, McBrid E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701

    [8]

    Jensen B J, Cherne F J, Cooley J C, Zhernokletov M V, Kovalev A E 2010 Phys. Rev. B 81 214109

    [9]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Wu Q, Tan H 2014 Appl. Phys. Lett. 105 201910

    [10]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [11]

    Song P, Cai L C, Tao T J, Yuan S, Chen H, Huang J, Zhao X W, Wang X J 2016 J. Appl. Phys. 120 195101

    [12]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese)[谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔 2011 物理学报 60 106401]

    [13]

    Tan Y, Yu Y Y, Dai C D, Jin K, Wang Q S, Hu J B, Tan H 2013 J. Appl. Phys. 113 093509

    [14]

    Weng J D, Tan H, Hu S L, Ma Y, Wang X 2005 Sci. Instrum Rev. 76 093301

    [15]

    Jin F Q 1999 Introduction to Experimental Equation of State (2th Ed.) (Beijing:Science Press) p200 (in Chinese)[经福谦 1999 实验物态方程导引(第二版) (北京:科学出版社) 第200页]

    [16]

    Jensen B J, Holtkamp D B, Rigg P A, Dolan D H 2007 J. Appl. Phys. 101 013523

    [17]

    Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363

    [18]

    Marsh S P 1981 LASL Shock Hugoniot Data (California:University of California Press) p23

    [19]

    Wetta N, Pelissier J L 2001 Physica A 289 479

    [20]

    Hayes D B 1975 J. Appl. Phys. 46 3438

  • [1] Sun Guan-Wen, Cui Han-Yin, Li Chao, Lin Wei-Jun. Methods of modelling dispersive sound speed profiles of Martian atmosphere and their effects on sound propagation paths. Acta Physica Sinica, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [2] Qu Ke, Piao Sheng-Chun, Zhu Feng-Qin. A noval method of constructing shallow water sound speed profile based on dynamic characteristic of internal tides. Acta Physica Sinica, 2019, 68(12): 124302. doi: 10.7498/aps.68.20181867
    [3] Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [4] Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang. Numerical study on acoustic behavior of two-dimensional granular system. Acta Physica Sinica, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [5] Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun. Acoustic detection and nonlinear response of granular materials under vertical vibrations. Acta Physica Sinica, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] Pan Hao, Wu Zi-Hui, Hu Xiao-Mian. Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment. Acta Physica Sinica, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [7] Su Lin, Ma Li, Song Wen-Hua, Guo Sheng-Ming, Lu Li-Cheng. Influences of sound speed profile on the source localization of different depths. Acta Physica Sinica, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [8] Qu Pu-Bo, Guan Xiao-Wei, Zhang Zhen-Rong, Wang Sheng, Li Guo-Hua, Ye Jing-Feng, Hu Zhi-Yun. Laser induced thermal grating spectroscopy thermometry technique. Acta Physica Sinica, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [9] Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin. Sound velocity and phase transition for low porosity tin at high pressure. Acta Physica Sinica, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [10] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [11] Tan Ye, Yu Yu-Ying, Dai Cheng-Da, Yu Ji-Dong, Wang Qing-Song, Tan Hua. Release melting of bismuth. Acta Physica Sinica, 2013, 62(3): 036401. doi: 10.7498/aps.62.036401
    [12] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Linear wave propagation in the bubbly liquid. Acta Physica Sinica, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [13] Li Jia, Yang Kun-De, Lei Bo, He Zheng-Yao. Research on the temporal-spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean. Acta Physica Sinica, 2012, 61(8): 084301. doi: 10.7498/aps.61.084301
    [14] Zheng He-Peng, Jiang Yi-Min, Peng Zheng, Fu Li-Ping. Properties of sound waves in granular matter analyzed by an elastic potential model. Acta Physica Sinica, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [15] Zhang Qi, Li Yin-Chang, Liu Rui, Jiang Yi-Min, Hou Mei-Ying. Acoustic probing of the granular solid system under direct shear. Acta Physica Sinica, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [16] Wang Xin-Feng, Xiong Xian-Chao, Gao Min-Zhong. Experimental method of measuring sound velocity using ultrasonic flowmeter. Acta Physica Sinica, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [17] Song Ping, Wang Qing-Song, Dai Cheng-Da, Cai Ling-Cang, Zhang Yi, Weng Ji-Dong. Sound velocity and shock melting of low porosity aluminum. Acta Physica Sinica, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [18] Lu Yi-Gang, Peng Jian-Xin. Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory. Acta Physica Sinica, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [19] Zhu Ming, Wang Shu, Wang Shu-Tao, Xia Dong-Hai. An acoustic gas concentration measurement algorithm for carbon monoxide in mixtures based on molecular multi-relaxation model. Acta Physica Sinica, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [20] Luo Ben-Yi, Lu Yi-Gang. Study of sound speed in near-critical carbon dioxide. Acta Physica Sinica, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
Metrics
  • Abstract views:  6138
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  02 October 2017
  • Accepted Date:  09 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回