Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rotating characteristics of glow discharge filament on liquid electrode surface

Li Xue-Chen Geng Jin-Ling Jia Peng-Ying Wu Kai-Yue Jia Bo-Yu Kang Peng-Cheng

Citation:

Rotating characteristics of glow discharge filament on liquid electrode surface

Li Xue-Chen, Geng Jin-Ling, Jia Peng-Ying, Wu Kai-Yue, Jia Bo-Yu, Kang Peng-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Atmospheric pressure glow discharge above liquid electrode has extensive application potentials in biomedicine, chemical degradation,environmental protection,etc.In this paper,such a kind of discharge excited by a direct current voltage is generated through using a metal rod above water surface.Results show that the discharge has a ring shape on the water surface when the current is low.With increasing the discharge current,its diameter first increases,and then decreases after reaching a maximum,and finally slightly increases.In this process,the discharge transits from a conical shape to a column.Fast photography indicates that the conical discharge actually originates from the rotation of a discharge filament,which can be attributed to the effect of electronegative particles generated in the discharge channel. These electronegative particles,mainly including NO,NO2,NO3,O,O3 and OH,can increase electron attachment coefficient β,resulting in extinguishment of the original discharge channel.Due to a similar field value and a normal β coefficient,the breakdown conditions can be satisfied in a region adjacent to the original channel.Therefore,the discharge will move into the new region.Further investigation indicates that both the conical discharge and the column discharge are in a normal glow regime.By optical emission spectroscopy,it is found that the vibrational temperature,the rotational temperature and the intensity ratio of I391.4/I337.1 increase with increasing the current.Electron mobility decreases in the conical discharge due to voltage decreasing with the current.Hence,electrons have an increased possibility with which they are attracted by the electronegative particles to form negative ions.Consequently,with increasing the discharge current,more negative ions will be accumulated not only near the conical center,but also in the vicinity of the discharge channel.Obviously,there is repulsive force between the negative ions in the two regions.The repulsive force increases with increasing the discharge current,which leads to the ring diameter increasing with the current.Besides the negative ions,gas temperature plays another important role in the discharge.It increases with current increasing,leading to the decrease of gas density in the discharge channel.Hence,electrons have a reduced probability with which they are attached by electronegative particles.This factor will lead to a reduced force between less negative ions in the two regions.Consequently,after reaching its maximum,the ring diameter decreases with current increasing.If the current is high enough,the discharge channel will have a sufficiently high temperature and an adequately lower gas density, resulting in an increased electron energy as well as an increased α(the first Townsend ionization coefficient).Therefore, the discharge will be self-sustained in the original region,other than move into an adjacent region.Consequently,the column discharge appears with the current increasing to some extent.In the column discharge,more negative ions will be accumulated above the water surface with increasing the current.These negative ions extend along the water surface,which contributes to the slight diameter increase of the luminous column.These experimental results are of great significance for theoretically studying liquid anode discharge.
      Corresponding author: Li Xue-Chen, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575050, 10805013), the Natural Science Foundation of Hebei province, China (Grant Nos. A2015201199, A2015201092, A2016201042), One Hundred Talent Project of Hebei Province, China (Grant No. SLRC2017021), the 333 Talents Project of Hebei Province, China (Grant No. A2016005005), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. LJRC001), and the Midwest Universities Comprehensive Strength Promotion Project.
    [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001

    [2]

    Bruggeman P, Ribezl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012

    [3]

    Bobkova E S, Krasnov D S, Sungurova A V, Rybkin V V, Choi H S 2016 Korean J. Chem. Eng. 33 1620

    [4]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862

    [5]

    Shimizu T, Iwafuchi Y, Morfill G E, Sato T 2011 J. Photopolym. Sci. Technol. 24 421

    [6]

    Jacobs T, Carbone E, Morent R, Geyter N D, Reniersb F, Leys C 2010 Surf. Interface Anal. 42 1316

    [7]

    Shirai N, Uchida S, Tochikubo F 2014 Jpn. J. Appl. Phys. 53 046202

    [8]

    Shekhar R, Karunasagar D, Manjusha R, Arunachalam J 2009 Anal. Chem. 81 8157

    [9]

    Shen J, Sun Q, Zhang Z L, Cheng C, Lan Y, Zhang H, Xu Z M, Zhao Y, Xia W D, Chu P K 2015 Plasma Process. Polym. 12 252

    [10]

    Takai E, Kitano K, Kuwabara J, Shiraki K 2012 Plasma Process. Polym. 9 77

    [11]

    Gils C A J, Hofmann S, Boekema B K H L, Brandenburg R, Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 175203

    [12]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [13]

    Shutov D A, Ol’khova E O, Kostyleva A N, Bobkova E S 2014 High Energy Chem. 48 343

    [14]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [15]

    Lu X P, Laroussi M 2003 J. Phys. D: Appl. Phys. 36 661

    [16]

    Andre P, Aubreton J, Barinov Y, Elchinger M F, Fauchais P, Faure1 G, Kaplan V, Lefort A, Rat V, Shkol’nik S 2002 J. Phys. D: Appl. Phys. 35 1846

    [17]

    Rowland S M, Lin F C 2006 J. Phys. D: Appl. Phys. 39 3067

    [18]

    Lu Y, Xu S F, Zhong X X, Ostrikov K, Cvelbar U, Mariotti D 2013 Europhys. Lett. 102 15002

    [19]

    Liu J J, Hu X 2013 Plasma Sci. Technol. 15 768

    [20]

    Li X C, Zhang P P, Jia P Y, Chu J D, Chen J Y 2017 Sci. Report 7 2672

    [21]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2008 IEEE Trans. Plasma Sci. 36 126

    [22]

    Miao S Y, Ren C S, Wang D Z, Zhang Y T, Qi B, Wang Y N 2008 IEEE Trans. Plasma Sci. 36 126

    [23]

    Wilson A, Staack D, Farouk T, Gutsol A, Fridman A, Farouk B 2008 Plasma Sources Sci. Technol. 17 045001

    [24]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag Berlin Heidelberg) p131

    [25]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700

    [26]

    Shuaibov A K, Chuchman M P, Mesarosh L P 2014 Tech. Phys. 59 847

    [27]

    Li X C, Yuan N, Jia P Y, Chen J Y 2010 Phys. Plasmas 17 093504

    [28]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [29]

    Bruggeman P, Schram D, Kong M, Leys C 2009 Plasma Process. Polym. 6 751

  • [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001

    [2]

    Bruggeman P, Ribezl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012

    [3]

    Bobkova E S, Krasnov D S, Sungurova A V, Rybkin V V, Choi H S 2016 Korean J. Chem. Eng. 33 1620

    [4]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862

    [5]

    Shimizu T, Iwafuchi Y, Morfill G E, Sato T 2011 J. Photopolym. Sci. Technol. 24 421

    [6]

    Jacobs T, Carbone E, Morent R, Geyter N D, Reniersb F, Leys C 2010 Surf. Interface Anal. 42 1316

    [7]

    Shirai N, Uchida S, Tochikubo F 2014 Jpn. J. Appl. Phys. 53 046202

    [8]

    Shekhar R, Karunasagar D, Manjusha R, Arunachalam J 2009 Anal. Chem. 81 8157

    [9]

    Shen J, Sun Q, Zhang Z L, Cheng C, Lan Y, Zhang H, Xu Z M, Zhao Y, Xia W D, Chu P K 2015 Plasma Process. Polym. 12 252

    [10]

    Takai E, Kitano K, Kuwabara J, Shiraki K 2012 Plasma Process. Polym. 9 77

    [11]

    Gils C A J, Hofmann S, Boekema B K H L, Brandenburg R, Bruggeman P J 2013 J. Phys. D: Appl. Phys. 46 175203

    [12]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [13]

    Shutov D A, Ol’khova E O, Kostyleva A N, Bobkova E S 2014 High Energy Chem. 48 343

    [14]

    Cho Y I, Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A 2015 Rev. Sci. Instrum. 86 013501

    [15]

    Lu X P, Laroussi M 2003 J. Phys. D: Appl. Phys. 36 661

    [16]

    Andre P, Aubreton J, Barinov Y, Elchinger M F, Fauchais P, Faure1 G, Kaplan V, Lefort A, Rat V, Shkol’nik S 2002 J. Phys. D: Appl. Phys. 35 1846

    [17]

    Rowland S M, Lin F C 2006 J. Phys. D: Appl. Phys. 39 3067

    [18]

    Lu Y, Xu S F, Zhong X X, Ostrikov K, Cvelbar U, Mariotti D 2013 Europhys. Lett. 102 15002

    [19]

    Liu J J, Hu X 2013 Plasma Sci. Technol. 15 768

    [20]

    Li X C, Zhang P P, Jia P Y, Chu J D, Chen J Y 2017 Sci. Report 7 2672

    [21]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2008 IEEE Trans. Plasma Sci. 36 126

    [22]

    Miao S Y, Ren C S, Wang D Z, Zhang Y T, Qi B, Wang Y N 2008 IEEE Trans. Plasma Sci. 36 126

    [23]

    Wilson A, Staack D, Farouk T, Gutsol A, Fridman A, Farouk B 2008 Plasma Sources Sci. Technol. 17 045001

    [24]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag Berlin Heidelberg) p131

    [25]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700

    [26]

    Shuaibov A K, Chuchman M P, Mesarosh L P 2014 Tech. Phys. 59 847

    [27]

    Li X C, Yuan N, Jia P Y, Chen J Y 2010 Phys. Plasmas 17 093504

    [28]

    Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125

    [29]

    Bruggeman P, Schram D, Kong M, Leys C 2009 Plasma Process. Polym. 6 751

  • [1] Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge. Acta Physica Sinica, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [2] Wang Zhen, Zhao Zhi-Hang, Fu Yang-Yang. Numerical simulation study on microdischarge via a unified fluid model. Acta Physica Sinica, 2024, 73(12): 125201. doi: 10.7498/aps.73.20240392
    [3] Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo. Formation and evolution of striation plasma in high-pressure argon glow discharge. Acta Physica Sinica, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [4] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [5] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [6] Wang Jian-Long, Ding Fang, Zhu Xiao-Dong. Optical properties of direct current glow discharge plasmas at high pressures. Acta Physica Sinica, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [7] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Wang Qiang, Wang Xin-Xin. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration. Acta Physica Sinica, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [8] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [9] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Liu Kai, Wang Xin-Xin. Preliminary study on similarity of glow discharges in scale-down gaps. Acta Physica Sinica, 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [10] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [11] Yu Zhe, Zhang Zhi-Tao, Yu Qing-Xuan, Xu Shao-Jie, Yao Jing, Bai Min-Dong, Tian Yi-Ping, Liu Kai-Ying. Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air. Acta Physica Sinica, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [12] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [13] Zhang Ying, He Zhi-Bing, Li Ping, Yan Jian-Cheng. Thermal stability of Si-doped glow discharge polymer films. Acta Physica Sinica, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [14] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [15] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [16] Qi Bing, Ren Chun-Sheng, Ma Teng-Cai, Wang You-Nian, Wang De-Zhen. Stabilization of the multi-pin to multi-sphere plane negative corona discharge. Acta Physica Sinica, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [17] Zhang Lian-Zhu, Gao Shu-Xia. Effect of adding hydrogen to a nitrogen glow discharge on electron behavior. Acta Physica Sinica, 2006, 55(7): 3524-3530. doi: 10.7498/aps.55.3524
    [18] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [19] LIU DE-YONG, WANG DE-ZHEN, LIU JIN-YUAN. DYNAMICS AND SUSPENSION OF DUST PARTICLES IN CATHODE SHEATHS OF DC GLOW DISCHARGES. Acta Physica Sinica, 2000, 49(6): 1094-1100. doi: 10.7498/aps.49.1094
    [20] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
Metrics
  • Abstract views:  5657
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  11 October 2017
  • Accepted Date:  23 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回