Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: First-principles study

Xu Zi-Wei Shi Chang-Shuai Zhao Guang-Hui Wang Ming-Yuan Liu Gui-Wu Qiao Guan-Jun

Citation:

Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: First-principles study

Xu Zi-Wei, Shi Chang-Shuai, Zhao Guang-Hui, Wang Ming-Yuan, Liu Gui-Wu, Qiao Guan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the first-principles of the density functional theory, the Gibbs free energies (△GH0) of the hydrogen adsorption on the 2H-phase molybdenum diselenide monolayer (MoSe2) with different active sites and hydrogen coverage rates are calculated. The calculated results reveal that several ideal adsorbed rates and sites are very close to those at thermoneutral state (△GH0~0). To compare their catalytic ability in the hydrogen evolution reaction (HER), the exchange current density (i0) as a function of △GH0 is calculated as a volcano curve. Two sites located at the top of volcano curve present higher exchange current densities than that of Pt catalyst. The charge transfers and the bonding details of the two edge-hydrogen-adsorptions (Mo edge and Se edge) are analyzed by the charge density difference and electronegativity as the associated structures and relative △GH0 are further explained. It is found that the localized charge transfer distributed uniformly between the hydrogen atoms and the adsorption sites can facilitate the catalytic ability of HER. For this reason, the catalytic ability of HER for the Se edge is more stable than that of Mo edge with less sensitivity to the absorption sites and hydrogen coverage rates. Based on the first-principles molecular dynamics (MD) simulation, finally, the influences of the thermal motion on the two kinds of structures of hydrogen adsorption at the higher temperature are explored, with the critical temperature for the hydrogen desorption as well as the atomistic dynamics discovered. It is worth mentioning that during the structure optimization and MD simulation, the edge deformation and reconstruction are discovered, respectively, which indicates that the ideal edge of MoSe2 may not be the most stable structure, which will change with the external conditions. This theoretic study reveals the atomistic mechanisms of the hydrogen adsorption and desorption of the single-layer 2H-phase MoSe2 at different temperatures, with the edge lattice deformation and reconstruction discovered, which can deepen our insights into the HER mechanisms near the edges of the 2H-phase MoSe2 at different temperatures and provide theoretic guidelines for designing the high-efficient and low-cost catalyst in the HER through tuning the MoSe2 edges.
      Corresponding author: Xu Zi-Wei, ziweixu2014@ujs.edu.cn;gjqiao@ujs.edu.cn ; Qiao Guan-Jun, ziweixu2014@ujs.edu.cn;gjqiao@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774136, 11404144), the China Postdoctoral Science Foundation (Grant Nos. 2016M601722, 2018T110445), and the Research Foundation of Jiangsu University, China (Grant No. 14JDG120).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [4]

    Frame F A, Osterloh F E 2010 J. Phys. Chem. C 114 10628

    [5]

    Huang M, Cho K 2009 J. Phys. Chem. C 113 5238

    [6]

    Liu Z K, Lau S P, Yan F 2015 Chem. Soc. Rev. 44 5638

    [7]

    Xiang Q J, Yu J G, Jaroniec M 2012 J. Am. Chem. Soc. 134 6575

    [8]

    Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S 2014 J. Am. Chem. Soc. 136 8504

    [9]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [10]

    Stephenson T, Li Z, Olsen B, Mitlin D 2014 Energy Environ. Sci. 7 209

    [11]

    Zhu C B, Mu X K, van Aken P A, Yu Y, Maier J 2014 Angew. Chem. Int. Ed. 53 2152

    [12]

    Deng D H, Fu Q, Novoselov K S, Fu Q, Zheng N F, Tian Z Q, Bao X H 2016 Nat. Nanotechnol. 11 218

    [13]

    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie R F, Curss L A, Salehi-Khojin A 2016 ACS Nano 10 2167

    [14]

    Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H 2014 Nanoscale 6 5762

    [15]

    Huang H, Feng X, Du C C, Wu S Y, Song W B 2015 J. Mater. Chem. A 3 16050

    [16]

    Gordon R B, Bertram M, Graedel T E 2006 Proc. Natl. Acad. Sci. USA 103 1209

    [17]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [18]

    Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R 2010 Angew. Chem. Int. Ed. 49 4059

    [19]

    Laursen A B, Kegnæs S, Dahl S, Chorkendorff I 2012 Energy Environ. Sci. 5 5577

    [20]

    Merki D, Hu X L 2011 Energy Environ. Sci. 4 3878

    [21]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [22]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [23]

    Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I B, Nørskov J K 2005 J. Am. Chem. Soc. 127 5308

    [24]

    Shu H B, Zhou D, Li F, Cao D, Chen X S 2017 ACS Appl. Mater. Interfaces 9 42688

    [25]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [26]

    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W D, Xie, Y 2013 Adv. Mater. 25 5807

    [27]

    Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 13 6222

    [28]

    Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S 2013 J. Am. Chem. Soc. 135 10274

    [29]

    Eftekhari A 2017 Appl. Mater. Today 8 1

    [30]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [31]

    Kohn W, Sham L 1965 Phys. Rev. 140 A1133

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Kresse G Furthmller J 1996 Comput. Mater. Sci. 6 15

    [34]

    Liu L L, Li X Y, Xu L C, Liu R P, Yang Z 2017 J. Taiyuan Univ. Technol. 48 570 (in Chinese)[刘丽丽, 李秀燕, 徐利春, 刘瑞萍, 杨致 2017 太原理工大学学报 48 570]

    [35]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K 2006 Nat. Mater. 5 909

    [36]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [38]

    Zheng Y, Jiao Y, Jaronice M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52

    [39]

    Noerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. ElectroChem. Soc. 152 J23

    [40]

    Wang B B, Zhu G, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 物理学报 65 038102]

    [41]

    Tsai C, Chan K, Abild-Pedersen F, Nørskov J K 2014 Phys. Chem. Chem. Phys. 16 13156

    [42]

    Qu B, Yu X B, Chen Y J, Zhu C L, Li C Y, Yin Z X, Zhang X T 2015 ACS Appl. Mater. Interfaces 7 14170

    [43]

    Cui P, Choi J H, Chen W, Zeng J, Shih C K, Li Z Y, Zhang Z Y 2017 Nano Lett. 17 1097

    [44]

    Yang H X, Yan X R, Cui J Z, Wang J H, Wang X R, Qin X 2002 Inorganic Chemistry (Vol. 4) (Beijing: Higher Education Press) pp138-145 (in Chinese)[杨宏孝, 颜秀茹, 崔建中, 王建辉, 王兴尧, 秦学 2002 无机化学 (第四版) (北京: 高等教育出版社) 第138–145页]

    [45]

    Chen Y, Cui P, Ren X B, Zhang C D, Jin C H, Zhang Z Y, Shih C K 2017 Nat. Commun. 8 15135

  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [4]

    Frame F A, Osterloh F E 2010 J. Phys. Chem. C 114 10628

    [5]

    Huang M, Cho K 2009 J. Phys. Chem. C 113 5238

    [6]

    Liu Z K, Lau S P, Yan F 2015 Chem. Soc. Rev. 44 5638

    [7]

    Xiang Q J, Yu J G, Jaroniec M 2012 J. Am. Chem. Soc. 134 6575

    [8]

    Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S 2014 J. Am. Chem. Soc. 136 8504

    [9]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [10]

    Stephenson T, Li Z, Olsen B, Mitlin D 2014 Energy Environ. Sci. 7 209

    [11]

    Zhu C B, Mu X K, van Aken P A, Yu Y, Maier J 2014 Angew. Chem. Int. Ed. 53 2152

    [12]

    Deng D H, Fu Q, Novoselov K S, Fu Q, Zheng N F, Tian Z Q, Bao X H 2016 Nat. Nanotechnol. 11 218

    [13]

    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie R F, Curss L A, Salehi-Khojin A 2016 ACS Nano 10 2167

    [14]

    Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H 2014 Nanoscale 6 5762

    [15]

    Huang H, Feng X, Du C C, Wu S Y, Song W B 2015 J. Mater. Chem. A 3 16050

    [16]

    Gordon R B, Bertram M, Graedel T E 2006 Proc. Natl. Acad. Sci. USA 103 1209

    [17]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [18]

    Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R 2010 Angew. Chem. Int. Ed. 49 4059

    [19]

    Laursen A B, Kegnæs S, Dahl S, Chorkendorff I 2012 Energy Environ. Sci. 5 5577

    [20]

    Merki D, Hu X L 2011 Energy Environ. Sci. 4 3878

    [21]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [22]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [23]

    Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I B, Nørskov J K 2005 J. Am. Chem. Soc. 127 5308

    [24]

    Shu H B, Zhou D, Li F, Cao D, Chen X S 2017 ACS Appl. Mater. Interfaces 9 42688

    [25]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [26]

    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W D, Xie, Y 2013 Adv. Mater. 25 5807

    [27]

    Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 13 6222

    [28]

    Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S 2013 J. Am. Chem. Soc. 135 10274

    [29]

    Eftekhari A 2017 Appl. Mater. Today 8 1

    [30]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [31]

    Kohn W, Sham L 1965 Phys. Rev. 140 A1133

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Kresse G Furthmller J 1996 Comput. Mater. Sci. 6 15

    [34]

    Liu L L, Li X Y, Xu L C, Liu R P, Yang Z 2017 J. Taiyuan Univ. Technol. 48 570 (in Chinese)[刘丽丽, 李秀燕, 徐利春, 刘瑞萍, 杨致 2017 太原理工大学学报 48 570]

    [35]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K 2006 Nat. Mater. 5 909

    [36]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [38]

    Zheng Y, Jiao Y, Jaronice M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52

    [39]

    Noerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. ElectroChem. Soc. 152 J23

    [40]

    Wang B B, Zhu G, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 物理学报 65 038102]

    [41]

    Tsai C, Chan K, Abild-Pedersen F, Nørskov J K 2014 Phys. Chem. Chem. Phys. 16 13156

    [42]

    Qu B, Yu X B, Chen Y J, Zhu C L, Li C Y, Yin Z X, Zhang X T 2015 ACS Appl. Mater. Interfaces 7 14170

    [43]

    Cui P, Choi J H, Chen W, Zeng J, Shih C K, Li Z Y, Zhang Z Y 2017 Nano Lett. 17 1097

    [44]

    Yang H X, Yan X R, Cui J Z, Wang J H, Wang X R, Qin X 2002 Inorganic Chemistry (Vol. 4) (Beijing: Higher Education Press) pp138-145 (in Chinese)[杨宏孝, 颜秀茹, 崔建中, 王建辉, 王兴尧, 秦学 2002 无机化学 (第四版) (北京: 高等教育出版社) 第138–145页]

    [45]

    Chen Y, Cui P, Ren X B, Zhang C D, Jin C H, Zhang Z Y, Shih C K 2017 Nat. Commun. 8 15135

  • [1] WEI Zhaozhao. Molecular dynamics simulation of bending behavior of B2-FeAl alloy nanowires with different crystallographic orientations. Acta Physica Sinica, 2025, 74(3): 036201. doi: 10.7498/aps.74.20241030
    [2] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [3] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] Li Shou-Ying, Zhao Wei-Min, Qiao Jian-Hua, Wang Yong. Competitive adsorption of CO and H2 on strained Fe(110) surface. Acta Physica Sinica, 2019, 68(21): 217103. doi: 10.7498/aps.68.20190660
    [5] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [6] Liu Xiu-Ying, Li Xiao-Feng, Yu Jing-Xin, Li Xiao-Dong. Density functional theory study of hydrogen spillover mechanism on Pd doped covalent organic frameworks COF-108. Acta Physica Sinica, 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [7] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [8] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [9] Zhang Chun-Yan, Liu Xian-Ming. Dynamic behavior of hydrogen clusters under intense femtosecond laser. Acta Physica Sinica, 2015, 64(16): 163601. doi: 10.7498/aps.64.163601
    [10] Yuan Si-Wei, Feng Yan-Hui, Wang Xin, Zhang Xin-Xin. Molecular dynamics simulation of thermal conductivity of mesoporous α-Al2O3. Acta Physica Sinica, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [11] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [12] Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin. Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation. Acta Physica Sinica, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [13] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [14] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [16] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Xu Chun-Gang. Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation. Acta Physica Sinica, 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [17] Lu Qi-Liang, Luo Qi-Quan, Chen Li-Li. Density functional theory study of hydrogen adsorption on C@Al12 cluster. Acta Physica Sinica, 2010, 59(1): 234-238. doi: 10.7498/aps.59.234
    [18] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong, Zhao Ming, He Guang-Ping. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption. Acta Physica Sinica, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [19] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Li Zhi-Bao. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation in conjunction with chemical injection method. Acta Physica Sinica, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [20] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
  • supplement 217102-20180882suppl.zip supplement
Metrics
  • Abstract views:  8686
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2018
  • Accepted Date:  05 September 2018
  • Published Online:  05 November 2018

/

返回文章
返回