Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal stability of MoS2 encapsulated by graphene

Liu Le Tang Jian Wang Qin-Qin Shi Dong-Xia Zhang Guang-Yu

Citation:

Thermal stability of MoS2 encapsulated by graphene

Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Monolayer molybdenum disulfide (MoS2), a semiconductor material with direct band gap, is considered to be an important fundamental material for the future development of the semiconductor industry. In order to apply the material to semiconductor devices, we have to investigate the electrical, optical and thermal properties of MoS2. People have always been concerning about the electrical and optical properties, but pay little attention to the thermal properties of MoS2, especially thermal stability. It is well known that semiconductor device generates a lot of heat when it works, sometimes even running in high temperature environment. The above conditions all require the material which has good thermal stability. So we focus on how to improve the thermal stability of MoS2. In this paper, we report the construction of the van der Waals heterostructures of graphene and MoS2 by encapsulating monolayer MoS2 with graphene, and dissect the thermal stability of encapsulated MoS2 in argon (Ar) and hydrogen (H2) atmosphere respectively. The results show that in Ar atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, while the exposed MoS2 is decomposed almost completely at 1000 ℃. In H2 atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, but the exposed MoS2 is decomposed completely at 800 ℃. In conclusion, the thermal stability of MoS2 encapsulated by graphene can be improved significantly. We analyze the reason why MoS2 encapsulated by graphene gains good thermal stability. Firstly, the covered graphene provides additional van der Waals forces, which increases the decomposition energy of MoS2, making it more stable at high temperature environment. Secondly, graphene separates MoS2 from the external environment, preventing MoS2 from contacting and reacting with external gas, which greatly improves the thermal stability of MoS2 at high temperature environment. Meanwhile, graphene covers the active defect site on MoS2, making it difficult to react at defects. In summary, the monolayer MoS2 devices can work normally at high temperature when MoS2 is encapsulated by graphene. In addition, our work also provides a feasible approach to improving the thermal stability of other two-dimensional materials.
      Corresponding author: Shi Dong-Xia, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572289, 61734001) and Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH004, XDPB06).
    [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [3]

    Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091

    [4]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [5]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [6]

    Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H, Dubey M 2016 Nano Res. 9 1543

    [7]

    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522

    [8]

    Ding Z, Pei Q X, Jiang J W, Huang W, Zhang Y W 2016 Carbon 96 888

    [9]

    Srinivasan S, Balasubramanian G 2018 Langmuir 34 3326

    [10]

    Galashev A E E, Rakhmanova O R 2014 Phys. -Usp. 57 970

    [11]

    Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018

    [12]

    Campos-Delgado J, Kim Y A, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull R D, Dresselhaus M S, Terrones M 2009 Chem. Phys. Lett. 469 177

    [13]

    Wang X W, Fan W, Fan Z W, Dai W Y, Zhu K L, Hong S Z, Sun Y F, Wu J Q, Liu K 2018 Nanoscale 10 3540

    [14]

    Niakan H, Zhang C, Hu Y, Szpunar J A, Yang Q 2014 Thin Solid Films 562 244

    [15]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S 2012 Nano lett. 12 1538

    [16]

    Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637

    [17]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632

    [18]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001

    [19]

    Sevik C 2014 Phys. Rev. B 89 035422

    [20]

    Anees P, Valsakumar M C, Panigrahi B K 2017 Phys. Chem. Chem. Phys. 19 10518

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

  • [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [3]

    Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091

    [4]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [5]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [6]

    Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H, Dubey M 2016 Nano Res. 9 1543

    [7]

    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522

    [8]

    Ding Z, Pei Q X, Jiang J W, Huang W, Zhang Y W 2016 Carbon 96 888

    [9]

    Srinivasan S, Balasubramanian G 2018 Langmuir 34 3326

    [10]

    Galashev A E E, Rakhmanova O R 2014 Phys. -Usp. 57 970

    [11]

    Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018

    [12]

    Campos-Delgado J, Kim Y A, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull R D, Dresselhaus M S, Terrones M 2009 Chem. Phys. Lett. 469 177

    [13]

    Wang X W, Fan W, Fan Z W, Dai W Y, Zhu K L, Hong S Z, Sun Y F, Wu J Q, Liu K 2018 Nanoscale 10 3540

    [14]

    Niakan H, Zhang C, Hu Y, Szpunar J A, Yang Q 2014 Thin Solid Films 562 244

    [15]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S 2012 Nano lett. 12 1538

    [16]

    Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637

    [17]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632

    [18]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001

    [19]

    Sevik C 2014 Phys. Rev. B 89 035422

    [20]

    Anees P, Valsakumar M C, Panigrahi B K 2017 Phys. Chem. Chem. Phys. 19 10518

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

  • [1] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Physica Sinica, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [5] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [6] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [7] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [8] Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong. Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings. Acta Physica Sinica, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [9] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [10] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [11] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [13] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [14] Li Qiao-Qiao, Zhang Xin, Wu Jiang-Bin, Lu Yan, Tan Ping-Heng, Feng Zhi-Hong, Li Jia, Wei Cui, Liu Qing-Bin. The second-order combination Raman modes of bilayer graphene in the range of 1800-2150 cm-1. Acta Physica Sinica, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [15] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [16] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [17] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [18] Zhang Qiu-Hui, Han Jing-Hua, Feng Guo-Ying, Xu Qi-Xing, Ding Li-Zhong, Lu Xiao-Xiang. Raman spectrum research on graphene modification under high intensity laser. Acta Physica Sinica, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [19] Zhang Xu-Dong, Xu Tie-Feng, Nie Qiu-Hua, Dai Shi-Xun, Shen Xiang, Lu Long-Jun, Zhang Xiang-Hua. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped TeO2-B2O3-SiO2 glasses. Acta Physica Sinica, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [20] Shen Xiang, Nie Qiu-Hua, Xu Tie-Feng, Gao Yuan. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped tungsten-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
Metrics
  • Abstract views:  8772
  • PDF Downloads:  248
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2018
  • Accepted Date:  27 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回