Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO3/Si interface

Chen Dong-Yun Gao Ming Li Yong-Hua Xu Fei Zhao Lei Ma Zhong-Quan

Citation:

First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO3/Si interface

Chen Dong-Yun, Gao Ming, Li Yong-Hua, Xu Fei, Zhao Lei, Ma Zhong-Quan
PDF
HTML
Get Citation
  • An amorphous mixing layer (3.5–4.0 nm in thickness) containing silicon (Si), oxygen (O), molybdenum (Mo) atoms, named α-SiOx(Mo), is usually formed by evaporating molybdenum trioxide (MoO3) powder on an n-type Si substrate. In order to investigate the process of adsorption, diffusion and nucleation of MoO3 in the evaporation process and ascertain the formation mechanism of α-SiOx(Mo) on a atomic scale, the first principle calculation is used and all the results are obtained by using the Vienna ab initio simulation package. The possible adsorption model of MoO3 on the Si (100) and the defect formation energy for substitutional defects and vacancy defects in α-SiO2 and α-MoO3 are calculated by the density functional theory. The results show that an amorphous layer is formed between MoO3 film and Si (100) substrate according to ab initio molecular dynamics at 1500 K, which are in good agreement with experimental observations. The O and Mo atoms diffuse into Si substrate and form the bonds of Si—O or Si—O—Mo, and finally, form an α-SiOx(Mo) layer. The adsorption site of MoO3 on the reconstructed Si (100) surface, where the two oxygen atoms of MoO3 bond with two silicon atoms of Si (100) surface, is the most stable and the adsorption energy is -5.36 eV, accompanied by the electrons transport from Si to O. After the adsorption of MoO3 on the Si substrate, the structure of MoO3 is changed. Two Mo—O bond lengths of MoO3 are 1.95 Å and 1.94 Å, respectively, elongated by 0.22 Å and 0.21 Å compared with the those before the adsorption of MoO3 on Si substrate, while the last bond length of MoO3 is little changed. The defect formation energy value of neutral oxygen vacancy in α-SiO2 is 5.11 eV and the defect formation energy values of neutral oxygen vacancy in α-MoO3 are 0.96 eV, 1.96 eV and 3.19 eV, respectively. So it is easier to form oxygen vacancy in MoO3 than in SiO2, which implies that the oxygen atoms will migrate from MoO3 to SiO2 and forms a 3.5–4.0-nm-thick α-SiOx(Mo) layer. As for the substitutional defects in MoO3 and SiO2, Mo substitutional defects are most likely to form in SiO2 in a large range of Mo chemical potential. So based on our obtained results, the forming process of the amorphous mixing layer may be as follows: the O atoms from MoO3 bond with Si atoms first and form the SiOx. Then, part of Mo atoms are likely to replace Si atoms in SiOx. Finally, the ultra-thin buffer layer containing Si, O, Mo atoms is formed at the interface of MoO3/Si. This work simulates the reaction of MoO3/Si interface and makes clear the interfacial geometry. It is good for us to further understand the process of adsorption and diffusion of atoms during evaporating, and it also provides a theoretical explanation for the experimental phenomenon and conduces to obtaining better interface passivation and high conversion efficiency of solar cell.
      Corresponding author: Ma Zhong-Quan, zqma@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874070, 61674099, 61274067) and the R&D Foundation of SHU-SOEN’s PV Joint Lab (Grant No. SS-E0700601).
    [1]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [2]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109Google Scholar

    [3]

    Battaglia C, Yin X T, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B W, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967Google Scholar

    [4]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X T, Zhang M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902Google Scholar

    [5]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D, Ballif C 2015 Appl. Phys. Lett. 107 081601Google Scholar

    [6]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2016 J. Mater. Res. 32 260

    [7]

    Gao M, Chen D Y, Han B C, Song W L, Zhou M, Song X M, Xu F, Zhao L, Li Y H, Ma Z Q 2018 ACS Appl. Mater. Interfaces 10 27454Google Scholar

    [8]

    Chen D Y, Gao M, Wan Y Z, Li Y H, Guo H B, Ma Z Q 2019 Appl. Surf. Sci. 473 20Google Scholar

    [9]

    Kresse K, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [10]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [12]

    Lambert D S, Murphy S T, Lennon A, Burr P A 2017 RSC Adv. 7 53810Google Scholar

    [13]

    Nosé S 1984 J. Chem. Phys. 81 511

    [14]

    Fialko E F, Kikhtenko A V, Goncharov V B, Zamaraev K I 1997 J. Phys. Chem. A 101 8607

    [15]

    Oliveira J A, Almeida W B D, Duarte H A 2003 Chem. Phys. Lett. 372 650Google Scholar

    [16]

    Anez R, Sierraalta A, Díaz L, Bastardo A, Coll D 2015 Appl. Surf. Sci. 335 160Google Scholar

    [17]

    Lu S Q, Wang C, Jin Y X, Bu Q Q, Yang Y 2012 J. Synthetic Crystals 41 1037

    [18]

    Pavlova T V, Zhidomirov G M, Eltsov K N 2018 J. Phys. Chem. C 122 1741

    [19]

    Wan Y Z, Gao M, Li Y, Du H W, Li Y H, Guo H B, Ma Z Q 2017 Appl. Phys. Lett. 110 213902Google Scholar

    [20]

    陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫 2017 物理学报 66 118201Google Scholar

    Tao P C, Huang Y, Zhou X H, Chen X S, Lu W 2017 Acta Phys. Sin. 66 118201Google Scholar

    [21]

    Coquet R, Willock D J 2005 Phys. Chem. Chem. Phys. 7 3819Google Scholar

    [22]

    Scopel W L, Silva A J R D, Orellana W, Fazzio A 2004 Appl. Phys. Lett. 84 1492Google Scholar

    [23]

    Liu H F, Yang R B, Yang W F, Jin Y J, Lee C J J 2018 Appl. Surf. Sci. 439 583Google Scholar

  • 图 1  MoO3(010)/Si(100)分子动力学模型 (a)扩散反应前; (b)扩散反应后; 灰色球、蓝色球、红色球分别代表钼原子、硅原子和氧原子

    Figure 1.  The structure model of MoO3(010)/Si(100) interface: (a) Before the ab initio molecular dynamics; (b) after the ab initio molecular dynamics. The grey, blue and red balls stand for Mo atoms, Si atoms, and O atoms, respectively

    图 2  MoO3在Si(100)不同吸附位点的结构示意图 (a) MoO3分子结构及重构后Si(100)表面形貌; (b)−(h) MoO3在吸附位点1−7时优化后的吸附模型; (i)最佳吸附位点7的差分电荷密度(黄色和绿色表示得失电子)

    Figure 2.  Adsorption configurations of MoO3 on Si (100) surface: (a) The optimized geometries of MoO3 molecule and reconstructed Si (100); (b)−(h) the adsorption configurations of MoO3 adsorbed on the different adsorption sites of Si (100) surface; (i) the difference charge density of MoO3 on the best adsorption site 7 of Si (100)

    图 3  α-SiO2α-MoO3晶胞结构

    Figure 3.  The framework of α-SiO2 and α-MoO3 unit cells

    图 4  不同生长条件下替位杂质形成能 (a) Si替位Mo; (b) Mo替位Si; 黑线表示晶体硅的化学势, 红线表示富氧条件下硅的化学势

    Figure 4.  The formation energy for the two substitutional defects: (a) Si in place of a Mo in MoO3; (b) Mo in place of a Si in SiO2. The black curves stand for the bulk Si chemical potential and the red curves stand for the chemical potential for Si in the SiO2 under an oxygen-rich environment

    表 1  MoO3在Si(100)不同吸附位点的吸附能

    Table 1.  The adsorption energy of MoO3 on Si (100)

    吸附位点 1 2 3 4 5 6 7
    吸附能Eab/eV –2.36 –4.21 –5.35 –5.35 –5.19 –5.06 –5.36
    DownLoad: CSV

    表 2  吸附前后体系7结构参数变化及Bader电荷

    Table 2.  The structure parameters and Bader charge of MoO3 adsorbed on the adsorption site 7 of Si (100) surface

    结构参数
    键长/Å 键角/(°)
    Mo—OI Mo—OΠ Mo—OШ OI —Mo— OΠ OΠ—Mo—OШ OШ—Mo—OI
    吸附前 1.73 1.73 1.73 107.73 107.74 107.77
    吸附后 1.95 1.94 1.71 125.62 116.92 116.11
    Bader电荷/e
    SiI SiΠ Mo OI OΠ OШ
    吸附前 3.88 3.98 3.91 6.72 6.67 6.71
    吸附后 3.07 3.21 4.14 7.36 7.35 6.72
    DownLoad: CSV
  • [1]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [2]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109Google Scholar

    [3]

    Battaglia C, Yin X T, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B W, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967Google Scholar

    [4]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X T, Zhang M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902Google Scholar

    [5]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D, Ballif C 2015 Appl. Phys. Lett. 107 081601Google Scholar

    [6]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2016 J. Mater. Res. 32 260

    [7]

    Gao M, Chen D Y, Han B C, Song W L, Zhou M, Song X M, Xu F, Zhao L, Li Y H, Ma Z Q 2018 ACS Appl. Mater. Interfaces 10 27454Google Scholar

    [8]

    Chen D Y, Gao M, Wan Y Z, Li Y H, Guo H B, Ma Z Q 2019 Appl. Surf. Sci. 473 20Google Scholar

    [9]

    Kresse K, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [10]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [12]

    Lambert D S, Murphy S T, Lennon A, Burr P A 2017 RSC Adv. 7 53810Google Scholar

    [13]

    Nosé S 1984 J. Chem. Phys. 81 511

    [14]

    Fialko E F, Kikhtenko A V, Goncharov V B, Zamaraev K I 1997 J. Phys. Chem. A 101 8607

    [15]

    Oliveira J A, Almeida W B D, Duarte H A 2003 Chem. Phys. Lett. 372 650Google Scholar

    [16]

    Anez R, Sierraalta A, Díaz L, Bastardo A, Coll D 2015 Appl. Surf. Sci. 335 160Google Scholar

    [17]

    Lu S Q, Wang C, Jin Y X, Bu Q Q, Yang Y 2012 J. Synthetic Crystals 41 1037

    [18]

    Pavlova T V, Zhidomirov G M, Eltsov K N 2018 J. Phys. Chem. C 122 1741

    [19]

    Wan Y Z, Gao M, Li Y, Du H W, Li Y H, Guo H B, Ma Z Q 2017 Appl. Phys. Lett. 110 213902Google Scholar

    [20]

    陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫 2017 物理学报 66 118201Google Scholar

    Tao P C, Huang Y, Zhou X H, Chen X S, Lu W 2017 Acta Phys. Sin. 66 118201Google Scholar

    [21]

    Coquet R, Willock D J 2005 Phys. Chem. Chem. Phys. 7 3819Google Scholar

    [22]

    Scopel W L, Silva A J R D, Orellana W, Fazzio A 2004 Appl. Phys. Lett. 84 1492Google Scholar

    [23]

    Liu H F, Yang R B, Yang W F, Jin Y J, Lee C J J 2018 Appl. Surf. Sci. 439 583Google Scholar

  • [1] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [3] Xu Pan-Pan, Han Pei-De, Zhang Zhu-Xia, Zhang Cai-Li, Dong Nan, Wang Jian. First-principles study of boron segregation in fcc-Fe grain boundaries and its influence on interface adhesive strength. Acta Physica Sinica, 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [4] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [5] Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan. First-principles study of formation and performance of diamond (111)/Al interface. Acta Physica Sinica, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [6] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [7] Mo Man, Zeng Ji-Shu, He Hao, Zhang Liang, Du Long, Fang Zhi-Jie. The first-principle study on the formation energies of Be, Mg and Mn doped CuInO2. Acta Physica Sinica, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [8] Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study. Acta Physica Sinica, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [9] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [10] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [11] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [12] Zhou Peng-Li, Zheng Shu-Kai, Tian Yan, Zhang Shuo-Ming, Shi Ru-Qian, He Jing-Fang, Yan Xiao-Bing. First principles calculation of dielectric properties of Al and N codoped 3C-SiC. Acta Physica Sinica, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [13] Lin Ling, Zhu Jia-Jie, Fang Hong. First-principles study on cation-doped Lu2Si2O7. Acta Physica Sinica, 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [14] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [15] Tang Dong-Hua, Xue Lin, Sun Li-Zhong, Zhong Jian-Xin. Doping effect of boron in Hg0.75Cd0.25Te: first-principles study. Acta Physica Sinica, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [16] Liu Feng-Li, Jiang Gang, Bai Li-Na, Kong Fan-Jie. First-principles study on the electronic structures of diadochic compounds Bi2Te3- x Sex(x ≤3). Acta Physica Sinica, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [17] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] Liu Xian-Kun, Liu Ying, Qian Da-Zhi, Zheng Zhou. First-principles study of helium atom doped interstitial sites of Al. Acta Physica Sinica, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [19] Li Hong, Wang Shao-Qing, Ye Heng-Qiang. Influence of Nb doping on oxidation resistance of γ-TiAl:A first principles study. Acta Physica Sinica, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [20] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
Metrics
  • Abstract views:  9537
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2019
  • Accepted Date:  15 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回