Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of tropopause height on inversion of greenhouse gas column concentration in Lhasa, China

Liu Dan-Dan Huang Yin-Bo Sun Yu-Song Lu Xing-Ji Cao Zhen-Song

Liu Dan-Dan, Huang Yin-Bo, Sun Yu-Song, Lu Xing-Ji, Cao Zhen-Song. Influence of tropopause height on inversion of greenhouse gas column concentration in Lhasa, China. Acta Phys. Sin., 2020, 69(13): 130201. doi: 10.7498/aps.69.20191431
Citation: Liu Dan-Dan, Huang Yin-Bo, Sun Yu-Song, Lu Xing-Ji, Cao Zhen-Song. Influence of tropopause height on inversion of greenhouse gas column concentration in Lhasa, China. Acta Phys. Sin., 2020, 69(13): 130201. doi: 10.7498/aps.69.20191431

Influence of tropopause height on inversion of greenhouse gas column concentration in Lhasa, China

Liu Dan-Dan, Huang Yin-Bo, Sun Yu-Song, Lu Xing-Ji, Cao Zhen-Song
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The tropopause, as a transition layer between the troposphere and the stratosphere, has a significant influence on the inversion of trace gas concentration. Theoretical analysis of the influence of tropopause on the vertical distribution of atmospheric molecular content, combined with Lhasa observation data, is presented, and the quantitative analysis of the influence of tropopause on the inversion of column-averaged dry air mole fractions (DMFs) is given as well. The comparison results show that the tropopause height has a great influence on the inversion results. First, its height variation has a little effect on XH2O, but it has a great influence on XCO2, XCH4 and XCO. The XCO2 and XCH4 have positive correlation with tropopause height variation, but for XCO, negative correlation with the tropopause height variation is observed. The correlation coefficient of XCO2, XCH4 and XCO are 0.998, 0.78 and 0.994, respectively. When the tropopause height is varied by 3 km, XCO2, XCH4 and XCO are varied by 8.64%、0.0354% and 0.0488%, respectively. The column-averaged dry air mole water vapor, carbon dioxide, carbon monoxide and methane in Lhasa are observed based on ground-based Fourier transform infrared spectrometer EM27/SUN. The time series of XH2O, XCO2, XCH4 and XCO in a period from August 6 to August 16, 2018 in Lhasa were obtained. The main achievements are as follows. In the observation period, the daily average value of XH2O, XCO2, XCH4 and XCO vary between 3432 and 4287 ppmv, 406.1 and 408.2 ppmv, 1.673 and 1.720 ppmv, and 0.082 and 0.095 ppmv, respectively. The average value of XH2O, XCO2, XCH4 and XCO are 3919.70, 406.887, 1.689, and 0.091 ppmv, res[ectively. Comparison between XCO2 and XCH4 time series shows that XCO2 and XCH4 time series have similar daily trends, the correlation coefficient between XCO2 and XCH4 time serires is higher than 0.5. In particular, the correlation coefficient reached about 0.86 on August 7, 8, 13, 2018. High correlation coefficient indicates that CO2 and CH4 molecules come from the same source. Compared with the WACCM simulation values, the XCO2 and XCH4 of the ground-based observations are small. The observation results can provide reference and first-hand direct observation data for the study of the temporal and spatial distribution of greenhouse gases in the temperate zone of the plateau in China.
      PACS:
      82.47.Aa(Lithium-ion batteries)
      82.80.Fk(Electrochemical methods)
      43.60.Jn(Source localization and parameter estimation)
      95.75.-z(Observation and data reduction techniques; computer modeling and simulation)
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    [1]

    王鑫, 吕达仁 2007 自然科学进展 17 913Google Scholar

    Wang X, Lu D R 2007 Prog. Nat. Sci. 17 913Google Scholar

    [2]

    洪健昌, 郭建平, 杜军, 王鹏祥 2016 气象学报 74 827

    Hong J C, Guo J P, Du J, Wang P X 2016 Acta Meteorol. Sin. 74 827

    [3]

    周顺武, 杨双艳, 张人禾, 马振峰 2010 大气科学学报 33 307Google Scholar

    Zhou S W, Yang S Y, Zhang R H, Ma Z F 2010 Trans. Atmos. Sci. 33 307Google Scholar

    [4]

    田红瑛, 田文寿, 雒佳丽, 张杰, 杨琴, 黄倩 2014 高原气象 33 1Google Scholar

    Tian H Y, Tian W S, Luo J L, Zhang J, Yang Q, Huang Q 2014 Plateau Meteorol. 33 1Google Scholar

    [5]

    王敏仲, 魏文寿, 何清, 杨莲梅, 程玉景 2012 高原气象 31 1203

    Wang M Z, Wei W S, He Q, Yang L M, Cheng Y J 2012 Plateau Meteorol. 31 1203

    [6]

    杨双艳, 周顺武, 张人禾, 吴萍, 李慧, 马振峰 2012 大气科学学报 35 438Google Scholar

    Yang S Y, Zhou S W, Zhang R H, Wu P, Li H, Ma Z F 2012 Trans. Atmos. Sci. 35 438Google Scholar

    [7]

    周秀骥, 李维亮, 陈隆勋, 刘煜 2004 气象学报 62 513

    Zhou X J, Li W L, Chen L X, Liu Y 2004 Acta Meteorol. Sin. 62 513

    [8]

    薛志航, 邓创, 孙一 2018 成都信息工程大学学报 33 464

    Xue Z H, Deng C, Sun Y 2018 J. Chengdu Univ. Inf. Technol. 33 464

    [9]

    Guo D, Su Y C, Shi C H, Xu J J, Powell A M 2015 J. Atmos Sol. Terr. Phys. 130 127

    [10]

    Wunch D, Toon G C, Wennberg P O 2010 Atmos. Meas. Tech. 8 2

    [11]

    Hase F, Hannigan J W, Coffey M T, Goldman A, Hopfner M, Jones N B, Rinsland C P, Wood S W 2004 J. Quant. Spectrosc. Radiat. Transfer 87 25Google Scholar

    [12]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

    [13]

    田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议 2015 物理学报 64 070704Google Scholar

    Tian Y, Sun Y W, Xie P H, Liu C, Liu W Q, Liu J G, Li A, Hu R Z, Wang W, Zeng Y 2015 Acta Phys. Sin. 64 070704Google Scholar

    [14]

    单昌功, 刘诚, 王薇, 孙友文, 刘文清, 田园, 杨维 2017 光谱学与光谱分析 37 1997

    Shan C G, Liu C, Wang W, Sun Y W, Liu W Q, Tian Y, Yang W 2017 Spectrosc. Spect. Anal. 37 1997

    [15]

    Kiel M, Hase F, Blumenstock T, Kirner O 2016 Atmos. Meas. Tech. 9 2223Google Scholar

    [16]

    Hase F, Frey M, Blumenstock T, Groß J, Kiel M, Mengistu Tsidu G, Schäfer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3059Google Scholar

    [17]

    Wunch D, Toon G C, Wennberg P Q, et al. 2010 Atmos. Meas. Tech. 3 1351Google Scholar

    [18]

    Frey M, Hase F, Blumenstock T, Gross J, Kiel M, Tsidu G M, Schafer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3047Google Scholar

    [19]

    Hase F, Drouin B J, Roehl C M, et al. 2013 Atmos. Meas. Tech. 6 3527Google Scholar

    [20]

    Zhou Min Q, Langerock B, Wells K C, et al. 2019 Atmos. Meas. Tech. 12 1393Google Scholar

    期刊类型引用(4)

    1. 李晓杰,喻云泰,张志文,董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报. 2022(03): 345-353 . 百度学术
    2. 王义军,左雪. 锂离子电池荷电状态估算方法及其应用场景综述. 电力系统自动化. 2022(14): 193-207 . 百度学术
    3. 邓佳敏,邹金慧,郑绪东,李志强,汤建国. 加热烟草制品(HTPs)烟具的电池管理系统(BMS)综述. 中国烟草学报. 2020(03): 15-23 . 百度学术
    4. 邓佳敏,邹金慧,郑绪东,李志强,汤建国. 低温卷烟加热装置电源能效管控系统. 信息技术. 2019(09): 34-38+43 . 百度学术

    其他类型引用(10)

  • 图 1  (a) 观测站点位置(拉萨市气象局); (b) 观测设备(傅里叶变换光谱仪, EM27/SUN)

    Figure 1.  (a) Observing site (Lhasa meteorological bureau); (b) FTIR spectrometer (EM27/SUN).

    图 2  不同对流层顶高度下的H2O (a), HDO (b), CO2 (c), CH4 (d), CO (e), N2O (f), HF (g)及O2 (h)廓线

    Figure 2.  The profiles of H2O (a), HDO (b), CO2 (c), CH4 (d), CO (e), N2O (f), HF (g) and O2 (h) at different heights of top troposphere

    图 3  XH2O (a), (e), XCO2 (b), (f), XCH4 (c), (g)及XCO (d), (h)日变化随对流层顶高度的变化

    Figure 3.  The diurnal variation of XH2O (a), (e), XCO2 (b), (f), XCH4 (c), (g) and XCO (d), (h) with tropopause height.

    图 4  (a) CO2, (b) CH4及(c) CO平均摩尔分数与对流层顶的线性拟合

    Figure 4.  Linear fit of the average mole fraction of CO2 (a), CH4 (b) and CO (c) to the top of the troposphere.

    图 5  XH2O (a), XCO2 (b), XCH4 (c), XCO (d)的日平均序列

    Figure 5.  Time series of XH2O (a), XCO2 (b), XCH4 (c)and XCO (d).

    图 6  2018年8月7日、8日 XCO2 (a), (b), XCH4 (c), (d)时间序列

    Figure 6.  Time series of XCO2 (a), (b)and XCH4 (c), (d)at August 7, 8, 2018.

    图 7  XCO2XCH4相关性 (a) 2018-08-6; (b) 2018-08-7; (c) 2018-08-8; (d) 2018-08-10; (e) 2018-08-12; (f) 2018-08-13; (g) 2018-08-14; (h) 2018-08-16

    Figure 7.  The correlation between XCO2 and XCH4: (a) August 6, 2018; (b) August 7, 2018; (c) August 8, 2018; (d) August 10, 2018

    图 8  2018年8月6日—16日72 h后向轨迹图 (a) 2018年8月4—6日; (b) 2018年8月7—9日; (c) 2018年8月10—12日; (d) 2018年8月14—16日

    Figure 8.  72-hour back trajectories of Lhasa during August 6—16, 2018: (a) August 4-6, 2018; (b) August 7-9, 2018; (c) August 10-12, 2018; (d) August 14-16, 2018

    图 9  地基观测XCO2 (a), XCH4 (b)日平均值与WACCM数据对比

    Figure 9.  Comparison of XCO2 (a) and XCH4 (b) based on ground-based observations and WACCM data.

    表 1  反演波段

    Table 1.  Inversion band.

    气体种类反演波段干扰分子
    H2O8353.4—8463.1CH4
    CO26173.0—6390.0H2O, HDO, CH4
    CH45897.0—6145.0H2O
    CO4208.7—4318.8CH4, H2O, HDO
    O27765.0—8005.0H2O, HF, CO2
    DownLoad: CSV
  • [1]

    王鑫, 吕达仁 2007 自然科学进展 17 913Google Scholar

    Wang X, Lu D R 2007 Prog. Nat. Sci. 17 913Google Scholar

    [2]

    洪健昌, 郭建平, 杜军, 王鹏祥 2016 气象学报 74 827

    Hong J C, Guo J P, Du J, Wang P X 2016 Acta Meteorol. Sin. 74 827

    [3]

    周顺武, 杨双艳, 张人禾, 马振峰 2010 大气科学学报 33 307Google Scholar

    Zhou S W, Yang S Y, Zhang R H, Ma Z F 2010 Trans. Atmos. Sci. 33 307Google Scholar

    [4]

    田红瑛, 田文寿, 雒佳丽, 张杰, 杨琴, 黄倩 2014 高原气象 33 1Google Scholar

    Tian H Y, Tian W S, Luo J L, Zhang J, Yang Q, Huang Q 2014 Plateau Meteorol. 33 1Google Scholar

    [5]

    王敏仲, 魏文寿, 何清, 杨莲梅, 程玉景 2012 高原气象 31 1203

    Wang M Z, Wei W S, He Q, Yang L M, Cheng Y J 2012 Plateau Meteorol. 31 1203

    [6]

    杨双艳, 周顺武, 张人禾, 吴萍, 李慧, 马振峰 2012 大气科学学报 35 438Google Scholar

    Yang S Y, Zhou S W, Zhang R H, Wu P, Li H, Ma Z F 2012 Trans. Atmos. Sci. 35 438Google Scholar

    [7]

    周秀骥, 李维亮, 陈隆勋, 刘煜 2004 气象学报 62 513

    Zhou X J, Li W L, Chen L X, Liu Y 2004 Acta Meteorol. Sin. 62 513

    [8]

    薛志航, 邓创, 孙一 2018 成都信息工程大学学报 33 464

    Xue Z H, Deng C, Sun Y 2018 J. Chengdu Univ. Inf. Technol. 33 464

    [9]

    Guo D, Su Y C, Shi C H, Xu J J, Powell A M 2015 J. Atmos Sol. Terr. Phys. 130 127

    [10]

    Wunch D, Toon G C, Wennberg P O 2010 Atmos. Meas. Tech. 8 2

    [11]

    Hase F, Hannigan J W, Coffey M T, Goldman A, Hopfner M, Jones N B, Rinsland C P, Wood S W 2004 J. Quant. Spectrosc. Radiat. Transfer 87 25Google Scholar

    [12]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

    [13]

    田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议 2015 物理学报 64 070704Google Scholar

    Tian Y, Sun Y W, Xie P H, Liu C, Liu W Q, Liu J G, Li A, Hu R Z, Wang W, Zeng Y 2015 Acta Phys. Sin. 64 070704Google Scholar

    [14]

    单昌功, 刘诚, 王薇, 孙友文, 刘文清, 田园, 杨维 2017 光谱学与光谱分析 37 1997

    Shan C G, Liu C, Wang W, Sun Y W, Liu W Q, Tian Y, Yang W 2017 Spectrosc. Spect. Anal. 37 1997

    [15]

    Kiel M, Hase F, Blumenstock T, Kirner O 2016 Atmos. Meas. Tech. 9 2223Google Scholar

    [16]

    Hase F, Frey M, Blumenstock T, Groß J, Kiel M, Mengistu Tsidu G, Schäfer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3059Google Scholar

    [17]

    Wunch D, Toon G C, Wennberg P Q, et al. 2010 Atmos. Meas. Tech. 3 1351Google Scholar

    [18]

    Frey M, Hase F, Blumenstock T, Gross J, Kiel M, Tsidu G M, Schafer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3047Google Scholar

    [19]

    Hase F, Drouin B J, Roehl C M, et al. 2013 Atmos. Meas. Tech. 6 3527Google Scholar

    [20]

    Zhou Min Q, Langerock B, Wells K C, et al. 2019 Atmos. Meas. Tech. 12 1393Google Scholar

  • [1] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi. High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm. Acta Physica Sinica, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [2] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Cheng Xiao-Xiao, Deng Ya-Song, Shen Xian-Chun, Sun Yong-Feng, Xu Han-Yang. Qualitative analysis of gas detection limit of Fourier infrared spectroscopy. Acta Physica Sinica, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [3] Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy. Acta Physica Sinica, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [4] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [5] Zhao Chao-Ying, Tan Wei-Han. Analytical solution of three-dimensional Fourier transform frequency spectrum for three-level potassium atomic gas. Acta Physica Sinica, 2020, 69(2): 020201. doi: 10.7498/aps.69.20190964
    [6] Ran Mao-Yi, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Effect of high power microwave injection on tropospheric freon. Acta Physica Sinica, 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [7] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [8] Wu Feng-Cheng, Li Ang, Xie Pin-Hua, Chen Hao, Ling liu-Yi, Xu Jin, Mou Fu-Sheng, Zhang Jie, Shen Jin-Chao, Liu Jian-Guo, Liu Wen-Qing. Dectection and distribution of tropospheric NO2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2015, 64(11): 114211. doi: 10.7498/aps.64.114211
    [9] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [10] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Feng Ming-Chun, Liu Jian-Guo, Liu Wen-Qing. Influence factors of quantitative analysis precision of greenhouse gases and carbon isotope ratio based on infrared spectroscopy. Acta Physica Sinica, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [11] Chen Yong, Zhao Hui-Chang, Chen Si, Zhang Shu-Ning. Imaging algorithm for missile-borne SAR using the fractional Fourier transform. Acta Physica Sinica, 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [12] Li Jie, Zhu Jing-Ping, Qi Chun, Zheng Chuan-Lin, Gao Bo, Zhang Yun-Yao, Hou Xun. Static Fourier-transform hyperspectral imaging full polarimetry. Acta Physica Sinica, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [13] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [14] Jiang Yu, Sheng Zheng, Shi Han-Qing. Global characteristics of the double tropopause derived from the COSMIC radio occultation data. Acta Physica Sinica, 2013, 62(3): 039205. doi: 10.7498/aps.62.039205
    [15] Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Mou Fu-Sheng, Xu Jin, Wu Feng-Cheng, Zeng Yi, Liu Jian-Guo, Liu Wen-Qing. Measuring tropospheric vertical distribution and vertical column density of NO2 by multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [16] Sun You-Wen, Xie Pin-Hua, Xu Jin, Zhou Hai-Jin, Liu Cheng, Wang Yang, Liu Wen-Qing, Si Fu-Qi, Zeng Yi. Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [17] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Liu Wen-Qing. Determination of tropospheric NO2 by airborne multi axis differential optical absorption spectroscopy. Acta Physica Sinica, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [18] Wang Min, Hu Shun-Xing, Fang Xin, Wang Shao-Lin, Cao Kai-Fa, Zhao Pei-Tao, Fan Guang-Qiang, Wang Ying-Jian. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [19] Wu Ping, Lü Bai-Da, Chen Tian-Lu. Fractional Fourier transform of beams in the use of the Wigner distribution function method. Acta Physica Sinica, 2005, 54(2): 658-664. doi: 10.7498/aps.54.658
    [20] ZHAO DAO-MU, WANG SHAO-MIN. MISALIGNED FRACTIONAL FOURIER TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION. Acta Physica Sinica, 2001, 50(10): 1935-1938. doi: 10.7498/aps.50.1935
  • 期刊类型引用(4)

    1. 李晓杰,喻云泰,张志文,董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报. 2022(03): 345-353 . 百度学术
    2. 王义军,左雪. 锂离子电池荷电状态估算方法及其应用场景综述. 电力系统自动化. 2022(14): 193-207 . 百度学术
    3. 邓佳敏,邹金慧,郑绪东,李志强,汤建国. 加热烟草制品(HTPs)烟具的电池管理系统(BMS)综述. 中国烟草学报. 2020(03): 15-23 . 百度学术
    4. 邓佳敏,邹金慧,郑绪东,李志强,汤建国. 低温卷烟加热装置电源能效管控系统. 信息技术. 2019(09): 34-38+43 . 百度学术

    其他类型引用(10)

Metrics
  • Abstract views:  7763
  • PDF Downloads:  71
  • Cited By: 14
Publishing process
  • Received Date:  19 September 2019
  • Accepted Date:  12 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回