Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface charging effect of the satellite SMILE

Xu Liang-Liang Cai Ming-Hui Yang Tao Han Jian-Wei

Citation:

Surface charging effect of the satellite SMILE

Xu Liang-Liang, Cai Ming-Hui, Yang Tao, Han Jian-Wei
PDF
HTML
Get Citation
  • When the satellite is on orbit, the surrounding plasma environment will interact with the spacecraft surface, accumulate charges on the spacecraft surface and cause surface charging effect, which could lead to electrostatic discharge and affect the running of the spacecraft. SMILE is a satellite operating in a solar synchronous and high inclination large elliptical orbit. The on-orbit motion will encounter ionospheric plasma, magnetospheric plasma and solar wind plasma, pass through the region of the outer radiation belt enriched by high-energy electrons. These environmental factors can cause the surface charging effect on satellite and affect on-orbit security of the satellite and the acquisition of scientific data. Utilizing the software simulation of spacecraft plasma interaction system, the charging effects of SMILE satellite surface in solar wind plasma, magnetic tail plasma and extremely harsh plasma environment have been simulated, and the charging potential distribution on its surface have been obtained. The results show that the surface charging potential varies in different environments, but all comfort with the design requirements. The analysis of surface current shows that the secondary electron emission has great influence on surface charging in various plasma environments. Under sun illumination, photoelectron emission dominates surface charging. By analyzing the charge current on the surface on the eclipse, the calculated results can supply the experimental curve of the secondary electron emission coefficient of indium tin oxide materials.
      Corresponding author: Cai Ming-Hui, caiminghui@nssc.ac.cn
    [1]

    Ferguson D 1993 31st Aerospace Sciences Meeting Reno, NV, USA, January 11–14, 1993 p705

    [2]

    王立 1995 真空与低温 1 2

    Wang L 1995 Vac. Cryogenics 1 2

    [3]

    王立, 秦晓刚 2002 真空与低温 8 2

    Wang L, Qin X G 2002 Vac. Cryogenics 8 2

    [4]

    Ch J Mateo-Velez, Sarrail H P, Roussel J F 2010 Technical Manual of SPIS Final Report FR 10/14511 DESP

    [5]

    Whipple E C, Krinsky I S, Torbert R B, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium Noordwijk, The Netherlands, September 13–16, 1983 p35

    [6]

    Reasoner D L, Lennartsson W, Chappell C R 1976 Spacecraft Charging by Magnetospheric Plasmas 47 89

    [7]

    庞永江 2001 硕士学位论文 (北京: 中国科学院)

    Pang Y J 2001 M. S. Thesis (Beijing: Chinese Academy of Sciences) (in Chinese)

    [8]

    田立成, 石红, 李娟, 张天平 2012 航天器环境工程 29 2

    Tian L C, Shi H, Li J, Zhang T P 2012 Spacecraft Environ. Eng. 29 2

    [9]

    杨昉, 师立勤, 刘四清, 龚建村 2011 空间科学学报 31 4

    Yang F, Shi L Q, Liu S Q, Gong J C 2011 Chin. J. Spac. Sci. 31 4

    [10]

    Schmidt R, Arends H, Pedersen A, Rüdenauer F, Fehringer M, Narheim B T, Svenes R, Kvernsveen K, Tsuruda K, Mukai T, Hayakawa H, Nakamura H M 1995 JGR: Space Physics 100 A9

    [11]

    Riedler W, Torkar K, Rüdenauer F, Fehringer M, Pedersen A, Schmidt R, Grard J L, Arends H, Narheim B T, Troim J, Torbert R, Olsen R C, Whipple E, Goldstein R, Valavanoglou N, Zhao H 1997 The Cluster and Phoenix Missions 79 271

    [12]

    Pedersen A, Chapell C R, Knott K, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium ESA SP-198 Noordwijk, The Netherlands, September 13–16, 1983 p185

    [13]

    张国荣, 柯建新, 许滨 2014 计算机仿真 9 38Google Scholar

    Zhang G R, Ke J X, Xu B 2014 Comput. Simul. 9 38Google Scholar

    [14]

    原青云, 孙永卫 2015 河北师范大学学报: 自然科学版 1 38

    Yuan Q Y, Sun Y W 2015 J. Hebei Normal Univ.: Nat. Sci. Ed. 1 38

    [15]

    杨集, 陈贤祥, 夏善红 2007 微纳电子技术 44 7Google Scholar

    Yang J, Chen X X, Xia S H 2007 Micronanoelectronic Technol. 44 7Google Scholar

    [16]

    姜春华, 赵正予 2008 航天器环境工程 25 2

    Jiang C H, Zhao Z Y 2008 Spacecraft Environ. Eng. 25 2

    [17]

    顾超超, 陈晓宁, 林楚 2017 微型机与应用 36 11

    Gu C C, Chen X N, Lin C 2017 Microcomputer & Its Applications 36 11

    [18]

    朱基聪, 方美华, 武明志, 田鹏宇, 费涛 2018 真空科学与技术学报 38 6

    Zhu J C, Fang M H, Wu M Z, Tian P Y, Fei T 2018 Chin. J. Vac. Technol. 38 6

    [19]

    Ferro O J, Hess S, Seran E, Denis P 2018 IEEE Trans. Plasma Sci. 46 3Google Scholar

    [20]

    Galgani G, Antonelli M, Bandinelli M, Scione E, Scorzafaval E Esa Workshop on Aerospace Emc. IEEE Valencia, Spain, May 23–25, 2016 p89

    [21]

    陈益峰, 杨生胜, 李得天, 秦晓刚, 王俊, 柳青 2015 原子能科学技术 49 1673Google Scholar

    Chen Y F, Yang S S, Li D T, Qin X G, Wang J, Liu Q 2015 Atom. Energ. Sci. Technol. 49 1673Google Scholar

    [22]

    Kuznetsova I A, Hessb S L G, Zakharova A V, Ciprianic F, Serand E, Popela S I, Lisine E A, Petrove O F, Dolnikova G G, Lyasha A A, Kopnina K I 2018 Planet. Space Sci. 156 62Google Scholar

    [23]

    赵呈选, 李得天, 杨生胜, 秦晓刚, 王俊 2017 高电压技术 43 1438

    Zhao C X, Li D T, Yang S S, Qin X G, Wang J 2017 High Voltage Eng. 43 1438

    [24]

    毕嘉眙, 李磊 2018 空间科学学报 38 909Google Scholar

    Bi J Y, Li L 2018 Chin. J. Space Sci. 38 909Google Scholar

    [25]

    朱基聪, 方美华, 全荣辉, 田鹏宇, 梁尔涛 2018 南京航空航天大学学报 50 422

    Zhu J C, Fang M H, Quan R H, Tian P Y, Liang E T 2018 J. Nanjing Univ. Aeronaut. Astronautics 50 422

    [26]

    Garrett H B 1981 Rev. Geophys. Space Phys. 19 4

    [27]

    Smith H M, Langmuir I 1926 Phys. Rev. 28 4

    [28]

    Bernstein I B, Rabinowitz I 1959 Phys. Fluids 2 2

    [29]

    Laframboise J G 1966 University of Toronto, Institute for Aerospace Studies, UTIAS Report No. 100

    [30]

    Chen F F 1965 Plasma Phys. 7 1

    [31]

    买胜利, 王立, 李凯, 秦晓刚 2006 真空与低温 12 2

    Mai S L, Wang L, Li K, Qin X G 2006 Vac. Cryogenics 12 2

    [32]

    王思展 2019 科技与创新 8 14

    Wang S Z 2019 Sci. Technol. Innov. 8 14

    [33]

    王思展, 黄建国, 姜利祥, 王军伟 2019 环境技术 4 18

    Wang S Z, Huang J G, Jiang L X, Wang J W 2019 Environ. Technol. 4 18

    [34]

    陈益峰, 杨生胜, 李得天, 秦晓刚, 史亮, 冯娜 2014 现代应用物理 5 3

    Chen Y F, Yang S S, Li D T, Qin X G, Shi L, Feng N 2014 Mod. Appl. Phys. 5 3

    [35]

    杨集, 陈贤祥, 周杰, 夏善红 2010 宇航学报 31 531Google Scholar

    Yang J, Chen X X, Zhou J, Xia S H 2010 J. Astronautics 31 531Google Scholar

  • 图 1  SMILE卫星模型图. 红绿蓝三个轴分别为x, y, z方向

    Figure 1.  The model of SMILE. The red, green and blue axes are in the x, y, z direction, respectively.

    图 2  阴影区节点4的平均表面电位 (a) 磁尾瓣等离子体环境; (b) 太阳风等离子体环境; (c) GEO极端恶劣等离子体环境

    Figure 2.  Average surface potential on node 4 on the eclipse: (a) The magnetic tail lobes plasma; (b) the solar wind plasma; (c) the GEO worst case plasma.

    图 3  阴影区节点4的表面电流 (a) 磁尾瓣等离子体环境; (b) 太阳风等离子体环境; (c) GEO极端恶劣等离子体环境

    Figure 3.  Surface current on node 4 on the eclipse; (a) The magnetic tail lobes plasma; (b) the solar wind plasma; (c) the GEO worst case plasma.

    图 4  光照下节点4的平均表面电位 (a) 磁尾瓣等离子体环境; (a) 太阳风等离子体环境; (c) GEO极端恶劣等离子体环境

    Figure 4.  Average surface potential on node 4 under sun illumination: (a) The magnetic tail lobes plasma; (b) the solar wind plasma; (c) the GEO worst case plasma.

    图 5  光照下节点4的表面电流 (a) 磁尾瓣等离子体环境; (b) 太阳风等离子体环境; (c) GEO极端恶劣等离子体环境

    Figure 5.  Surface current on node 4 under sun illumination: (a) The magnetic tail lobes plasma; (b) the solar wind plasma; (c) the GEO worst case plasma.

    表 1  SMILE卫星模型电路节点、表面材料及电路设置

    Table 1.  Design of nodes, surface materials and circuits of SMILE model.

    航天器部件电路节点表面
    材料
    电路
    设置/Ω
    载荷仓(底面)0ITO
    载荷仓1—5ITO20000
    伸杆天线6KAPT20000
    推进器7—10ITO20000
    太阳电池下表面11, 12CFRP37500
    太阳电池上表面13, 14ITO20000
    +X面测控天线顶端15, 17PCBZ20000
    +X面测控天线底端16, 18ITO20000
    星敏19—21ITO20000
    推进舱+X面探测器22AL20000
    推进舱-X面探测器23AL20000
    散热板对内面24, 26, 28ITO20000
    散热板对外面25, 27, 29PCBZ20000
    -X面测控天线30, 31PCBZ20000
    LIA安装面、测量面32, 34, 36, 38AL20000
    LIA对外面33, 37PCBZ20000
    LIA靠星体面35, 39ITO20000
    探测器镜头40—42ITO20000
    DownLoad: CSV

    表 2  等离子体环境参数

    Table 2.  Parameters of various plasma environment.

    等离子体环境离子密度电子密度离子温度电子温度
    cm–3cm–3eVeV
    磁尾瓣0.10.1540180
    太阳风8.78.71210
    GEO极端恶劣成分10.60.220004000
    成分21.31.22800027500
    DownLoad: CSV
  • [1]

    Ferguson D 1993 31st Aerospace Sciences Meeting Reno, NV, USA, January 11–14, 1993 p705

    [2]

    王立 1995 真空与低温 1 2

    Wang L 1995 Vac. Cryogenics 1 2

    [3]

    王立, 秦晓刚 2002 真空与低温 8 2

    Wang L, Qin X G 2002 Vac. Cryogenics 8 2

    [4]

    Ch J Mateo-Velez, Sarrail H P, Roussel J F 2010 Technical Manual of SPIS Final Report FR 10/14511 DESP

    [5]

    Whipple E C, Krinsky I S, Torbert R B, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium Noordwijk, The Netherlands, September 13–16, 1983 p35

    [6]

    Reasoner D L, Lennartsson W, Chappell C R 1976 Spacecraft Charging by Magnetospheric Plasmas 47 89

    [7]

    庞永江 2001 硕士学位论文 (北京: 中国科学院)

    Pang Y J 2001 M. S. Thesis (Beijing: Chinese Academy of Sciences) (in Chinese)

    [8]

    田立成, 石红, 李娟, 张天平 2012 航天器环境工程 29 2

    Tian L C, Shi H, Li J, Zhang T P 2012 Spacecraft Environ. Eng. 29 2

    [9]

    杨昉, 师立勤, 刘四清, 龚建村 2011 空间科学学报 31 4

    Yang F, Shi L Q, Liu S Q, Gong J C 2011 Chin. J. Spac. Sci. 31 4

    [10]

    Schmidt R, Arends H, Pedersen A, Rüdenauer F, Fehringer M, Narheim B T, Svenes R, Kvernsveen K, Tsuruda K, Mukai T, Hayakawa H, Nakamura H M 1995 JGR: Space Physics 100 A9

    [11]

    Riedler W, Torkar K, Rüdenauer F, Fehringer M, Pedersen A, Schmidt R, Grard J L, Arends H, Narheim B T, Troim J, Torbert R, Olsen R C, Whipple E, Goldstein R, Valavanoglou N, Zhao H 1997 The Cluster and Phoenix Missions 79 271

    [12]

    Pedersen A, Chapell C R, Knott K, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium ESA SP-198 Noordwijk, The Netherlands, September 13–16, 1983 p185

    [13]

    张国荣, 柯建新, 许滨 2014 计算机仿真 9 38Google Scholar

    Zhang G R, Ke J X, Xu B 2014 Comput. Simul. 9 38Google Scholar

    [14]

    原青云, 孙永卫 2015 河北师范大学学报: 自然科学版 1 38

    Yuan Q Y, Sun Y W 2015 J. Hebei Normal Univ.: Nat. Sci. Ed. 1 38

    [15]

    杨集, 陈贤祥, 夏善红 2007 微纳电子技术 44 7Google Scholar

    Yang J, Chen X X, Xia S H 2007 Micronanoelectronic Technol. 44 7Google Scholar

    [16]

    姜春华, 赵正予 2008 航天器环境工程 25 2

    Jiang C H, Zhao Z Y 2008 Spacecraft Environ. Eng. 25 2

    [17]

    顾超超, 陈晓宁, 林楚 2017 微型机与应用 36 11

    Gu C C, Chen X N, Lin C 2017 Microcomputer & Its Applications 36 11

    [18]

    朱基聪, 方美华, 武明志, 田鹏宇, 费涛 2018 真空科学与技术学报 38 6

    Zhu J C, Fang M H, Wu M Z, Tian P Y, Fei T 2018 Chin. J. Vac. Technol. 38 6

    [19]

    Ferro O J, Hess S, Seran E, Denis P 2018 IEEE Trans. Plasma Sci. 46 3Google Scholar

    [20]

    Galgani G, Antonelli M, Bandinelli M, Scione E, Scorzafaval E Esa Workshop on Aerospace Emc. IEEE Valencia, Spain, May 23–25, 2016 p89

    [21]

    陈益峰, 杨生胜, 李得天, 秦晓刚, 王俊, 柳青 2015 原子能科学技术 49 1673Google Scholar

    Chen Y F, Yang S S, Li D T, Qin X G, Wang J, Liu Q 2015 Atom. Energ. Sci. Technol. 49 1673Google Scholar

    [22]

    Kuznetsova I A, Hessb S L G, Zakharova A V, Ciprianic F, Serand E, Popela S I, Lisine E A, Petrove O F, Dolnikova G G, Lyasha A A, Kopnina K I 2018 Planet. Space Sci. 156 62Google Scholar

    [23]

    赵呈选, 李得天, 杨生胜, 秦晓刚, 王俊 2017 高电压技术 43 1438

    Zhao C X, Li D T, Yang S S, Qin X G, Wang J 2017 High Voltage Eng. 43 1438

    [24]

    毕嘉眙, 李磊 2018 空间科学学报 38 909Google Scholar

    Bi J Y, Li L 2018 Chin. J. Space Sci. 38 909Google Scholar

    [25]

    朱基聪, 方美华, 全荣辉, 田鹏宇, 梁尔涛 2018 南京航空航天大学学报 50 422

    Zhu J C, Fang M H, Quan R H, Tian P Y, Liang E T 2018 J. Nanjing Univ. Aeronaut. Astronautics 50 422

    [26]

    Garrett H B 1981 Rev. Geophys. Space Phys. 19 4

    [27]

    Smith H M, Langmuir I 1926 Phys. Rev. 28 4

    [28]

    Bernstein I B, Rabinowitz I 1959 Phys. Fluids 2 2

    [29]

    Laframboise J G 1966 University of Toronto, Institute for Aerospace Studies, UTIAS Report No. 100

    [30]

    Chen F F 1965 Plasma Phys. 7 1

    [31]

    买胜利, 王立, 李凯, 秦晓刚 2006 真空与低温 12 2

    Mai S L, Wang L, Li K, Qin X G 2006 Vac. Cryogenics 12 2

    [32]

    王思展 2019 科技与创新 8 14

    Wang S Z 2019 Sci. Technol. Innov. 8 14

    [33]

    王思展, 黄建国, 姜利祥, 王军伟 2019 环境技术 4 18

    Wang S Z, Huang J G, Jiang L X, Wang J W 2019 Environ. Technol. 4 18

    [34]

    陈益峰, 杨生胜, 李得天, 秦晓刚, 史亮, 冯娜 2014 现代应用物理 5 3

    Chen Y F, Yang S S, Li D T, Qin X G, Shi L, Feng N 2014 Mod. Appl. Phys. 5 3

    [35]

    杨集, 陈贤祥, 周杰, 夏善红 2010 宇航学报 31 531Google Scholar

    Yang J, Chen X X, Zhou J, Xia S H 2010 J. Astronautics 31 531Google Scholar

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] Li Xiang-Fu, Zhu Xiao-Lu, Jiang Gang. Plasma screening effect on electron-electron interactions. Acta Physica Sinica, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [3] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [4] Zhang Hai-Bao, Chen Qiang. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Physica Sinica, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [5] Ji Jian-Wei, Kazuya Yamamura, Deng Hui. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC. Acta Physica Sinica, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [6] Ma Kun, Chen Zhan-Bin, Huang Shi-Zhong. Influence of plasma shielding effect on ground state and excited state energies of Ar16+. Acta Physica Sinica, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [7] Li Zhi-Gang, Cheng Li, Yuan Zhong-Cai, Wang Jia-Chun, Shi Jia-Ming. Avalanche effect in plasma under high-power microwave irradiation. Acta Physica Sinica, 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [8] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Unbiased solid surface charging research inplasma environment. Acta Physica Sinica, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [9] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Characteristics plasma environment isolated conductor surface charging time domain. Acta Physica Sinica, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [10] Dong Tai-Yuan, Ye Kun-Tao, Liu Wei-Qing. The current status of surface wave plasma source development. Acta Physica Sinica, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [11] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [12] Meng Liang, Zhang Jie, Zhu Xiao-Dong, Wen Xiao-Hui, Ding Fang. Formations of conic surfaces on diamond films induced by hot filament assisted double-bias hydrogen plasma. Acta Physica Sinica, 2008, 57(4): 2334-2339. doi: 10.7498/aps.57.2334
    [13] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] Zhao Guo-Wei, Wang Zhi-Jiang, Xu Yue-Min, Liang Zhi-Wei, Xu Jie. Numerical simulation of plasma nonlinear phenomena excited by radio-frequency wave using FDTD method. Acta Physica Sinica, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [15] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [16] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [17] Zhang Li, Li Xiang-Dong, Jiang Xin-Ge. Plasma effect on the Kα group emission of He-like neon. Acta Physica Sinica, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [18] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [20] Qiu Hua-Tan, Wang You-Nian, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
Metrics
  • Abstract views:  8696
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2020
  • Accepted Date:  20 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回