Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures

Zhang Duo-Duo Liu Xiao-Feng Qiu Jian-Rong

Citation:

Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures

Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong
PDF
HTML
Get Citation
  • Nonlinear optical (NLO) effects are ubiquitous in the interaction of light with different materials. However, the NLO responses of most materials are inherently weak due to the small NLO susceptibility and the limited interaction length with the incident light. In plasmonic nanostructures the optical field is confined near the surface of the structures, so that the electromagnetic field is greatly enhanced in a localized fashion by spectral resonance. This effect results in the enhancement of light-matter interaction and NLO response of the material. Ultrafast pulse lasers have been widely used in optical communication, precise measurement, biomedicine, military laser weapons and other important fields due to their excellent performances. Although commercial lasers become very matured, they can achieve ultra-high peak power and ultra-short pulse width and ultra-high repetition rate, but the ultra-fast pulses in the mid-to-far infrared band are seldom studied, so finding a saturable absorber material with excellent performance is of great significance for developing the pulsed lasers. In this paper, we review the recent research progress of the applications of exiton nanostructure in ultrafast optical switches and pulse lasers based on noble metal and non-noble metals. The metallic system mainly refers to gold and silver nanoparticles. For non-noble metals, we mainly introduce our researches of chalcogenide semiconductor, heavily doped oxide and titanium nitride. A variety of wide bandgap semiconductors can exhibit metal-like properties through doping. Since doping can form free carriers, when their size is reduced to a nanometer scale, they will show the characteristics of local surface plasmon resonance, thus realizing ultra-fast nonlinear optical response, and the concentration of doped carriers cannot reach the level of metal carriers, thus being able to effectively reduce the inter-band loss caused by excessively high carriers. Through pump probe detection and Z-scan testing, we found that these plasmonic nanostructures exhibit ultrafast NLO response in tunable resonance bandwidth, which has been utilized as a working material for developing the optical switch to generate the pulsed laser with duration down to a femtosecond range. These results take on their potential applications in ultrafast photonics. Finally, we make a comparison of the pros and cons among different plasmonic materials and present a perspective of the future development.
      Corresponding author: Liu Xiao-Feng, xfliu@zju.edu.cn ; Qiu Jian-Rong, qjr@zju.edu.cn
    • Funds: Project supported by the International Key R&D Project (Grant No. 2018YFB1107200) and the National Natural Science Foundation of China (Grant Nos. 61775192, 51772270)
    [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar

    [3]

    Keller U 2003 Nature 424 831Google Scholar

    [4]

    Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar

    [5]

    Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar

    [6]

    Ams M, Marshall G D, Dekker P, Piper J A, Withford M J 2009 Laser Photonics Rev. 3 535Google Scholar

    [7]

    Zewail A H 1988 Science 242 1645Google Scholar

    [8]

    Liu X F, Guo Q B, Qiu J R 2017 Adv. Mater. 29 1605886Google Scholar

    [9]

    Wang G Z, Baker-Murray A A, Blau W J 2019 Laser Photonics Rev. 13 1800282Google Scholar

    [10]

    Zhang Y X, Lu D Z, Yu H H, Zhang H J 2019 Adv. Opt. Mater. 7 1800886Google Scholar

    [11]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [12]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [13]

    Hasan T, Sun Z P, Tan P H, Popa D, Flahaut E, Kelleher E J R, Bonaccorso F, Wang F Q, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari A C 2014 ACS Nano 8 4836Google Scholar

    [14]

    Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803Google Scholar

    [15]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [16]

    Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [17]

    Jin X X, Hu G H, Zhang M, Albrow O T, Zheng Z, Hasan T 2020 Nanophotonics 5 2192Google Scholar

    [18]

    Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 12823Google Scholar

    [19]

    Sun X L, Shi B N, Wang H Y, Lin N, Liu S D, Yang K J, Zhang B T, He J L 2019 Adv. Opt. Mater. 8 1901181Google Scholar

    [20]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [21]

    Feng J J, Li X H, Shi Z J, Zheng C, Li X W, Leng D Y, Wang Y M, Liu J, Zhu L J 2020 Adv. Opt. Mater. 8 1901762Google Scholar

    [22]

    Nie Z H, Trovatello C, Pogna E A A, Dal Conte S, Miranda P B, Kelleher E, Zhu C H, Turcu I C E, Xu Y B, Liu K H, Cerullo G, Wang F Q 2018 Appl. Phys. Lett. 112 031108Google Scholar

    [23]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [24]

    Liu J T, Khayrudinov V, Yang H, Sun Y, Matveev B, Remennyi M, Yang K J, Haggren T, Lipsanen H, Wang F Q, Zhang B T, He J L 2019 J. Phys. Chem. Lett. 10 4429Google Scholar

    [25]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, derAu J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435Google Scholar

    [26]

    Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R, Zhu S N 2017 Nat. Commun. 8 14111Google Scholar

    [27]

    Wang F Q, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I, Ferrari A C 2008 Nat. Nanotechnol. 3 738Google Scholar

    [28]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [29]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar

    [30]

    Zhang S F, Dong N N, McEvoy N, O'Brien M, Winters S, Berner N C, Yim C, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [31]

    Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C, Tang D Y 2012 Appl. Phys. Lett. 101 211106Google Scholar

    [32]

    Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J, Wang J Y 2013 Laser Photonics Rev. 7 L77Google Scholar

    [33]

    Zhang M, Wu Q, Zhang F, Chen L L, Jin X X, Hu Y W, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [34]

    Jiang X F, Zeng Z, Li S, Guo Z, Zhang H, Huang F, Xu Q H 2017 Materials (Basel) 10 210Google Scholar

    [35]

    Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [36]

    Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y, Jhon Y M 2017 Adv. Mater. 29 1702496Google Scholar

    [37]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [38]

    Chen H B, Wang F, Liu M Y, Qian M D, Men X J, Yao C F, Xi L, Qin W P, Qin G S, Wu C F 2019 Laser Photonics Rev. 13 1800326Google Scholar

    [39]

    Link S, El-Sayed M A 2003 Annu. Rev. Phys. Chem. 54 331Google Scholar

    [40]

    李杨, 徐红星, 郑迪, 石俊俊, 康猛, 付统, 张顺平 2019 激光与光电子学进展 56 2401Google Scholar

    Li Y, Xu H X, Zheng D, Shi J J, Kang M, Fu T, Zhang S P 2019 Laser & Optoelectronics Progress 56 2401Google Scholar

    [41]

    Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar

    [42]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnology 10 25Google Scholar

    [43]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [44]

    Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501Google Scholar

    [45]

    徐娅, 边捷, 张伟华 2019 激光与光电子学进展 56 202407Google Scholar

    Xu Y, Bian J, Zhang W H 2019 Laser & Optoelectronics Progress 56 202407Google Scholar

    [46]

    杨天, 陈成, 王晓丹, 周鑫, 雷泽雨 2019 激光与光电子学进展 56 202404Google Scholar

    Yang T, Cheng C, Wang X D, Zhou X, Lei Z Y 2019 Laser & Optoelectronics Progress 56 202404Google Scholar

    [47]

    王恒亮, 徐洁, 安正华 2019 中国科学: 物理学 力学 天文学 49 124202Google Scholar

    Wang H L, Xu J, An Z H 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124202Google Scholar

    [48]

    徐凝, 刘海舟, 朱嘉, 喻小强, 周林, 李金磊 2019 中国科学: 物理学 力学 天文学 49 124203Google Scholar

    Xu N, Liu H Z, Zhu J, Yu X Q, Zhou L, Li J L 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124203Google Scholar

    [49]

    Luther J M, Jain P K, Ewers T, Alivisatos A P 2011 Nat. Mater. 10 361Google Scholar

    [50]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [51]

    Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan K M 2017 Chem. Rev. 117 5865Google Scholar

    [52]

    Agrawal A, Cho S H, Zandi O 2018 Chem. Rev. 118 3121Google Scholar

    [53]

    郑迪, 徐红星, 李杨, 付统, 陈文, 孙嘉伟, 张顺平 2019 中国科学: 物理学 力学 天文学 49 124205

    Zheng D, Xu H X, Li Y, Fu T, Chen W, Sun J W, Zhang S P 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124205

    [54]

    盛冲, 刘辉, 祝世宁 2019 激光与光电子学进展 56 202402

    Sheng C, Liu H, Zhu S N 2019 Laser & Optoelectronics Progress 56 202402

    [55]

    Dykman L, Khlebtsov N 2012 Chem. Soc. Rev. 41 2256Google Scholar

    [56]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [57]

    Nie W J, Zhang Y X, Yu H H, Li R, He R Y, Dong N N, Wang J, Hubner R, Bottger R, Zhou S Q, Amekura H, Chen F 2018 Nanoscale 10 4228Google Scholar

    [58]

    Comin A, Manna L 2014 Chem. Soc. Rev. 43 3957Google Scholar

    [59]

    Rycenga M, Hou K K, Cobley C M, Schwartz A G, Camargo P H C, Xia Y N 2009 Phys. Chem. Chem. Phys. 11 5866Google Scholar

    [60]

    Eustis S, El-Sayed M A 2006 Chem. Soc. Rev. 35 209Google Scholar

    [61]

    Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar

    [62]

    Huang B, Kang Z, Li J, Liu M Y, Tang P H, Miao L L, Zhao C J, Qin G S, Qin W P, Wen S C, Prasad P N 2019 Photonics Res. 7 699Google Scholar

    [63]

    Li S Q, Kang Z, Li N, Jia H, Liu M Y, Liu J X, Zhou N N, Qin W P, Qin G S 2019 Opt. Mater. Express 9 2406Google Scholar

    [64]

    Li R, Pang C, Li Z Q, Yang M, Amekura H, Dong N N, Wang J, Ren F, Wu Q, Chen F 2020 Laser Photonics Rev. 14 1900302Google Scholar

    [65]

    Chen J J, Shi Z, Zhou S F, Fang Z J, Lv S C, Yu H H, Hao J H, Zhang H J, Wang J Y, Qiu J R 2019 Adv. Opt. Mater. 7 1801413Google Scholar

    [66]

    Lounis S D, Runnerstrom E L, Llordes A, Milliron D J 2014 J. Phys. Chem. Lett. 5 1564Google Scholar

    [67]

    Guo Q B, Yao Y H, Luo Z C, Qin Z P, Xie G Q, Liu M, Kang J, Zhang S A, Bi G, Liu X F, Qiu J R 2016 ACS Nano 10 9463Google Scholar

    [68]

    Alam M Z, De Leon I, Boyd R W 2016 Science 352 795Google Scholar

    [69]

    Caspani L, Kaipurath R P, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev V M, Boltasseva A, Faccio D 2016 Phys. Rev. Lett. 116 233901Google Scholar

    [70]

    Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R, Hosono H 2017 Adv. Mater. 29 1700754Google Scholar

    [71]

    Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q, Qiu J R 2018 ACS Nano 12 12770Google Scholar

    [72]

    Wang W Q, Yue W J, Liu Z Z, Shi T C, Du J, Leng Y X, Wei R F, Ye Y T, Liu C, Liu X F, Qiu J R 2018 Adv. Opt. Mater. 6 1700948Google Scholar

    [73]

    Litchinitser N M 2018 Adv. Phys. X 3 1367628Google Scholar

    [74]

    Xian Y H, Cai Y, Sun X Y, Liu X F, Guo Q B, Zhang Z X, Tong L M, Qiu J R 2019 Laser Photonics Rev. 13 1900029Google Scholar

    [75]

    Kang Z, Xu Y, Zhang L, Jia Z Y, Liu L, Zhao D, Feng Y, Qin G S, Qin W P 2013 Appl. Phys. Lett. 103 0401105Google Scholar

    [76]

    Guo Q B, Ji M X, Yao Y Y, Liu M, Luo Z C, Zhang S A, Liu X F, Qiu J R 2016 Nanoscale 8 18277Google Scholar

  • 图 1  锁模产生脉冲激光示意图[3]

    Figure 1.  Schematic illustration of the mechanism of mode-locking[3].

    图 2  金属纳米颗粒中导电电子在外部电场作用下的集体振荡示意图[41]

    Figure 2.  Schematic illustrating the collective oscillations of conduction electrons in response to an external electric field for nanoparticles[41].

    图 3  LSPR共振峰位随材料载流子浓度的变化[49]

    Figure 3.  LSPR frequency dependence on free carrier density and doping constraints[49].

    图 4  金属纳米颗粒的光激发和弛豫 (a)—(d) 金属纳米颗粒在激光脉冲照射下的光激发和弛豫过程, 以及时间尺度的特征[42]

    Figure 4.  Photoexcitation and relaxation of metallic nanoparticles: (a)−(d) Photoexcitation and subsequent relaxation processes following the illumination of a metal nanoparticle with a laser pulse, and characteristic timescales[42].

    图 5  二能级系统的能级结构和受激吸收过程

    Figure 5.  Energy-level structure of a two-energy level system and the process of stimulated absorption.

    图 6  金纳米棒的吸收光谱和脉冲激光输出 (a) 金纳米棒的透射电子显微镜图, 插图是金纳米棒溶液的照片; (b) 金纳米棒的吸收光谱(400—3200 nm); (c) 时域有限差分方法对串联GNRs的LSPR特性的数值模拟; (d) Er3+:ZBLAN光纤激光器的装置示意图; (e) 波长可调的调Q脉冲输出光谱[62]

    Figure 6.  Absorption spectrμm and pulse laser generation of Gold nanorods (GNRs): (a) Transmission electron microscope image, the inset of (a) shows the photograph of the GNRs solution; (b) absorption spectrum of GNRs from 400 to 3200 nm; (c) the finite-difference time-domain simulation results of the absorption cross section of one, two, three, and four GNRs concatenated; (d) experiment schematic of a tunable passively Q-switched Er3+:ZBLAN fiber laser using GNRs as the saturable absorber; (e) output spectrum of tunable passively Q-switched Er3+:ZBLAN fiber laser[62].

    图 7  在1064 nm实现调Q被动锁模 (a) 离子注入实验示意图; (b) Ag:SiO2的横截面透射电子显微镜图像, 银离子的通量为1.0 × 1017 cm-2, 其中下左图为选区电子衍射图像, 下右图为元素映射图像; (c) 调Q被动锁模装置图; (d)单脉冲序列(左图), 基频射频谱(右图)[64]

    Figure 7.  Experimental preparation and characterization of Q-switched mode-locked pulses at 1064 nm: (a) Schematic diagram of the experimental process; (b) cross-sectional transmission electron microscope image of the Ag:SiO2 with Ag+ fluence of 1.0 × 1017 ions per cm2, the selected area electron diffraction image and element mapping image are shown as the left and right insets; (c) schematic diagram of Q-switched mode-locking operation; (d) the single pulse profile (left image) and the radio-frequency spectrum (right image)[64].

    图 8  金属氧化物中常见掺杂机制的示意图包含金属阳离子(橙色球体)和氧阴离子(红色球体)的基本晶格[66]

    Figure 8.  Schematic representation of the common doping mechanisms in metal oxides relative to a basic lattice containing metal cations (orange spheres) and oxygen anions (red spheres)[66].

    图 9  Cu2–xS溶胶纳米晶的非线性光学性质和相应脉冲激光器的性能 (a) Cu2–xS纳米晶的吸收光谱; (b) Cu2–xS和Cu2S纳米颗粒在1300 nm处的Z扫描曲线; (c) Cu2–xS纳米晶薄膜的透过率和激光功率密度的关系; (d) 1550 nm锁模脉冲输出序列; (e) 脉冲的自相关谱; (f) 激光脉冲在基频的射频谱[67]

    Figure 9.  Nonlinear properties of Cu2–xS nanocrystals and its ultrafast pulse generation: (a) Absorption spectrum of the synthesized nanocrystals; (b) typical Z-scan curves of Cu2–xS and Cu2S nanocrystals recorded at 1300 nm; (c) corresponding input power-dependent transmission; (d) mode-locking pulse train; (e) autocorrelation trace; (f) the radio-frequency optical spectrum at the fundamental frequency[67].

    图 10  ITO纳米颗粒在ENZ区域的光学非线性及超快瞬态光学响应 (a) ITO纳米颗粒的透射电子显微镜图, 插图为ITO溶胶纳米颗粒溶液和高分辨透射电子显微镜图; (b) 不同掺杂浓度的ITO纳米晶归一化消光光谱; (c) ITO纳米颗粒薄膜介电常数的实部与波长的关系; (d) ITO-12 PVA薄膜在1.3 μm处的Z扫描曲线, 其中作为对照, 给出了相同条件下的未掺杂的In2O3纳米晶薄膜的相应Z扫描曲线; (e) 不同抽运功率下, 旋涂于高纯石英片上的ITO-10纳米晶薄膜的瞬态吸收特性, 实线表示单次指数衰减函数的拟合结果[70]

    Figure 10.  Nonlinear optical response and ultrafast transient optical response of the ITO nanocrystals in ENZ region: (a) Typical transmission electron microscope images of ITO nanocrystals, with an average diameter of about 9 nm, the inset shows a photograph of the colloidal solution of ITO nanocrystals and a high resolution transmission electron microscope image of a single ITO nanocrystals; (b) normalized optical extinction spectra of the ITO nanocrystals with different doping levels; (c) wavelength dependent real part of the permittivity of the spin-coated ITO nanocrystals thin films; (d) Z-scan trace of a PVA film containing ITO nanocrystals recorded at 1.3 μm, ITO-12 shows notable saturable absorption, as compared to the undoped In2O3; (e) transient bleaching dynamics of ITO-10 nanocrystals film (spin-coated on quartz slid) under different pump fluence. Solid line shows the fitting with a single exponential decay function[70].

    图 11  IZO纳米颗粒在中红外波段的调Q脉冲输出 (a) 输出脉冲激光装置图; (b) 调Q脉冲序列; (c) 光谱图, 其中插图是激光脉冲在基频的射频谱, 对应的信噪比为30 dB; (d) 单脉冲曲线[71]

    Figure 11.  The Q-switching at mid-infrared region band based on IZO nanoparticles: (a) Schematic illustration of laser setup; (b) typical Q-switched pulse train; (c) optical spectrum; the inset is the radio frequency spectrum, indicating a signal-to-noise ratio of ~30 dB; (d) single pulse profile[71].

    图 12  二维MoO3纳米片的性质 (a) 原子力显微镜图; (b) 原始的MoO3纳米片和经过紫外光活化的等离激元MoO3纳米片分散液的紫外可见吸收光谱; (c) MoO3的透过率随光强的变化曲线; (d) 1 μm附近锁模光谱图; (e) 锁模脉冲序列; (f) 脉宽[72]

    Figure 12.  Characterizations of 2D MoO3 nanosheets: (a) Atomic force microscope image; (b) VIS-NIR absorption spectra for the colloidal dispersions of pristine MoO3 nanosheets and plasmonic (photoactivated) MoO3 nanosheets; the inset is the corresponding photographs; (c) dependence of transmission as a function of input power for plasmonic 2D MoO3; (d) optical spectrum; (e) pulse train; (f) pulse duration[72].

    图 13  基于TiN纳米颗粒的锁模脉冲输出及调Q脉冲 (a) TiN PVA薄膜在1550 nm处的非线性透过率随输入脉冲通量的变化曲线(调制深度); (b) 1.5 μm附近的锁模光谱; (c) 锁模脉冲序列; (d) 自相关曲线(脉宽); (e) 1 μm附近的调Q光谱; (f) 调Q脉冲输出功率随抽运功率的变化曲线[74]

    Figure 13.  Ultrafast pulse laser generation and Q-switched laser based on TiN: (a) Nonlinear transmittance curve of the TiN/PVA sample versus the input pulse fluence at 1550 nm; (b) optical spectrum; (c) pulse trains; (d) autocorrelation trace; (e) laser spectrum from the Q-switched laser at the maximum pumping power; (f) average output powers versus pumping power for lasing operation at 1064 nm[74].

    图 14  不同表面等离激元材料对应的LSPR波段

    Figure 14.  Different plasmonic materials corresponding LSPR wavelength.

    表 1  不同表面等离激元材料体系的光开关和超快脉冲应用(ML, 锁模; OS, 调Q)

    Table 1.  Different plasmonic materials for optical switch and pulse lasers (ML, mode-locking; QS: Q switch).

    激光
    波段
    光开关材
    料体系
    激光器运
    行模式
    最短
    脉宽
    重频
    1.0 μmMoO3–x光纤(ML)130 ps17 MHz[72]
    Cu2–xS固体(ML)7.8 ps84.17 MHz[67]
    TiN固体(QS)0.25μs590 kHz[74]
    Ag固体(ML)27 ps6.5 GHz[64]
    1.5 μmCu2–xS光纤(ML)295 fs7.28 MHz[67]
    TiN光纤(ML)763 fs8.19 MHz[74]
    ITO光纤(ML)593 fs16.62 MHz[70]
    Au光纤(ML)12 ps34.7 MHz[75]
    Cu-Sn-S光纤(ML)923 fs4.99 MHz[76]
    2.0 μmIZO固体(QS)3.61 μs17.32 kHz[71]
    Au光纤(QS)2.4 μs100.5 kHz[63]
    2.8 μmCu2–xS光纤(QS)0.75 μs90.7 kHz[67]
    IZO固体(QS)0.56 μs157.63 kHz[71]
    Au固体(QS)533 ns53.1 kHz[62]
    3.6 μmIZO固体(QS)1.78 μs56.2 kHz[71]
    DownLoad: CSV
  • [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar

    [3]

    Keller U 2003 Nature 424 831Google Scholar

    [4]

    Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar

    [5]

    Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar

    [6]

    Ams M, Marshall G D, Dekker P, Piper J A, Withford M J 2009 Laser Photonics Rev. 3 535Google Scholar

    [7]

    Zewail A H 1988 Science 242 1645Google Scholar

    [8]

    Liu X F, Guo Q B, Qiu J R 2017 Adv. Mater. 29 1605886Google Scholar

    [9]

    Wang G Z, Baker-Murray A A, Blau W J 2019 Laser Photonics Rev. 13 1800282Google Scholar

    [10]

    Zhang Y X, Lu D Z, Yu H H, Zhang H J 2019 Adv. Opt. Mater. 7 1800886Google Scholar

    [11]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [12]

    Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar

    [13]

    Hasan T, Sun Z P, Tan P H, Popa D, Flahaut E, Kelleher E J R, Bonaccorso F, Wang F Q, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari A C 2014 ACS Nano 8 4836Google Scholar

    [14]

    Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803Google Scholar

    [15]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [16]

    Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [17]

    Jin X X, Hu G H, Zhang M, Albrow O T, Zheng Z, Hasan T 2020 Nanophotonics 5 2192Google Scholar

    [18]

    Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 12823Google Scholar

    [19]

    Sun X L, Shi B N, Wang H Y, Lin N, Liu S D, Yang K J, Zhang B T, He J L 2019 Adv. Opt. Mater. 8 1901181Google Scholar

    [20]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [21]

    Feng J J, Li X H, Shi Z J, Zheng C, Li X W, Leng D Y, Wang Y M, Liu J, Zhu L J 2020 Adv. Opt. Mater. 8 1901762Google Scholar

    [22]

    Nie Z H, Trovatello C, Pogna E A A, Dal Conte S, Miranda P B, Kelleher E, Zhu C H, Turcu I C E, Xu Y B, Liu K H, Cerullo G, Wang F Q 2018 Appl. Phys. Lett. 112 031108Google Scholar

    [23]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [24]

    Liu J T, Khayrudinov V, Yang H, Sun Y, Matveev B, Remennyi M, Yang K J, Haggren T, Lipsanen H, Wang F Q, Zhang B T, He J L 2019 J. Phys. Chem. Lett. 10 4429Google Scholar

    [25]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, derAu J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435Google Scholar

    [26]

    Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R, Zhu S N 2017 Nat. Commun. 8 14111Google Scholar

    [27]

    Wang F Q, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I, Ferrari A C 2008 Nat. Nanotechnol. 3 738Google Scholar

    [28]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [29]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar

    [30]

    Zhang S F, Dong N N, McEvoy N, O'Brien M, Winters S, Berner N C, Yim C, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [31]

    Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C, Tang D Y 2012 Appl. Phys. Lett. 101 211106Google Scholar

    [32]

    Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J, Wang J Y 2013 Laser Photonics Rev. 7 L77Google Scholar

    [33]

    Zhang M, Wu Q, Zhang F, Chen L L, Jin X X, Hu Y W, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [34]

    Jiang X F, Zeng Z, Li S, Guo Z, Zhang H, Huang F, Xu Q H 2017 Materials (Basel) 10 210Google Scholar

    [35]

    Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar

    [36]

    Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y, Jhon Y M 2017 Adv. Mater. 29 1702496Google Scholar

    [37]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [38]

    Chen H B, Wang F, Liu M Y, Qian M D, Men X J, Yao C F, Xi L, Qin W P, Qin G S, Wu C F 2019 Laser Photonics Rev. 13 1800326Google Scholar

    [39]

    Link S, El-Sayed M A 2003 Annu. Rev. Phys. Chem. 54 331Google Scholar

    [40]

    李杨, 徐红星, 郑迪, 石俊俊, 康猛, 付统, 张顺平 2019 激光与光电子学进展 56 2401Google Scholar

    Li Y, Xu H X, Zheng D, Shi J J, Kang M, Fu T, Zhang S P 2019 Laser & Optoelectronics Progress 56 2401Google Scholar

    [41]

    Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar

    [42]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnology 10 25Google Scholar

    [43]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [44]

    Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501Google Scholar

    [45]

    徐娅, 边捷, 张伟华 2019 激光与光电子学进展 56 202407Google Scholar

    Xu Y, Bian J, Zhang W H 2019 Laser & Optoelectronics Progress 56 202407Google Scholar

    [46]

    杨天, 陈成, 王晓丹, 周鑫, 雷泽雨 2019 激光与光电子学进展 56 202404Google Scholar

    Yang T, Cheng C, Wang X D, Zhou X, Lei Z Y 2019 Laser & Optoelectronics Progress 56 202404Google Scholar

    [47]

    王恒亮, 徐洁, 安正华 2019 中国科学: 物理学 力学 天文学 49 124202Google Scholar

    Wang H L, Xu J, An Z H 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124202Google Scholar

    [48]

    徐凝, 刘海舟, 朱嘉, 喻小强, 周林, 李金磊 2019 中国科学: 物理学 力学 天文学 49 124203Google Scholar

    Xu N, Liu H Z, Zhu J, Yu X Q, Zhou L, Li J L 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124203Google Scholar

    [49]

    Luther J M, Jain P K, Ewers T, Alivisatos A P 2011 Nat. Mater. 10 361Google Scholar

    [50]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [51]

    Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan K M 2017 Chem. Rev. 117 5865Google Scholar

    [52]

    Agrawal A, Cho S H, Zandi O 2018 Chem. Rev. 118 3121Google Scholar

    [53]

    郑迪, 徐红星, 李杨, 付统, 陈文, 孙嘉伟, 张顺平 2019 中国科学: 物理学 力学 天文学 49 124205

    Zheng D, Xu H X, Li Y, Fu T, Chen W, Sun J W, Zhang S P 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124205

    [54]

    盛冲, 刘辉, 祝世宁 2019 激光与光电子学进展 56 202402

    Sheng C, Liu H, Zhu S N 2019 Laser & Optoelectronics Progress 56 202402

    [55]

    Dykman L, Khlebtsov N 2012 Chem. Soc. Rev. 41 2256Google Scholar

    [56]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [57]

    Nie W J, Zhang Y X, Yu H H, Li R, He R Y, Dong N N, Wang J, Hubner R, Bottger R, Zhou S Q, Amekura H, Chen F 2018 Nanoscale 10 4228Google Scholar

    [58]

    Comin A, Manna L 2014 Chem. Soc. Rev. 43 3957Google Scholar

    [59]

    Rycenga M, Hou K K, Cobley C M, Schwartz A G, Camargo P H C, Xia Y N 2009 Phys. Chem. Chem. Phys. 11 5866Google Scholar

    [60]

    Eustis S, El-Sayed M A 2006 Chem. Soc. Rev. 35 209Google Scholar

    [61]

    Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar

    [62]

    Huang B, Kang Z, Li J, Liu M Y, Tang P H, Miao L L, Zhao C J, Qin G S, Qin W P, Wen S C, Prasad P N 2019 Photonics Res. 7 699Google Scholar

    [63]

    Li S Q, Kang Z, Li N, Jia H, Liu M Y, Liu J X, Zhou N N, Qin W P, Qin G S 2019 Opt. Mater. Express 9 2406Google Scholar

    [64]

    Li R, Pang C, Li Z Q, Yang M, Amekura H, Dong N N, Wang J, Ren F, Wu Q, Chen F 2020 Laser Photonics Rev. 14 1900302Google Scholar

    [65]

    Chen J J, Shi Z, Zhou S F, Fang Z J, Lv S C, Yu H H, Hao J H, Zhang H J, Wang J Y, Qiu J R 2019 Adv. Opt. Mater. 7 1801413Google Scholar

    [66]

    Lounis S D, Runnerstrom E L, Llordes A, Milliron D J 2014 J. Phys. Chem. Lett. 5 1564Google Scholar

    [67]

    Guo Q B, Yao Y H, Luo Z C, Qin Z P, Xie G Q, Liu M, Kang J, Zhang S A, Bi G, Liu X F, Qiu J R 2016 ACS Nano 10 9463Google Scholar

    [68]

    Alam M Z, De Leon I, Boyd R W 2016 Science 352 795Google Scholar

    [69]

    Caspani L, Kaipurath R P, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev V M, Boltasseva A, Faccio D 2016 Phys. Rev. Lett. 116 233901Google Scholar

    [70]

    Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R, Hosono H 2017 Adv. Mater. 29 1700754Google Scholar

    [71]

    Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q, Qiu J R 2018 ACS Nano 12 12770Google Scholar

    [72]

    Wang W Q, Yue W J, Liu Z Z, Shi T C, Du J, Leng Y X, Wei R F, Ye Y T, Liu C, Liu X F, Qiu J R 2018 Adv. Opt. Mater. 6 1700948Google Scholar

    [73]

    Litchinitser N M 2018 Adv. Phys. X 3 1367628Google Scholar

    [74]

    Xian Y H, Cai Y, Sun X Y, Liu X F, Guo Q B, Zhang Z X, Tong L M, Qiu J R 2019 Laser Photonics Rev. 13 1900029Google Scholar

    [75]

    Kang Z, Xu Y, Zhang L, Jia Z Y, Liu L, Zhao D, Feng Y, Qin G S, Qin W P 2013 Appl. Phys. Lett. 103 0401105Google Scholar

    [76]

    Guo Q B, Ji M X, Yao Y Y, Liu M, Luo Z C, Zhang S A, Liu X F, Qiu J R 2016 Nanoscale 8 18277Google Scholar

  • [1] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [2] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [3] Cui Wen-Wen, Xing Xiao-Wei, Xiao Yue-Jia, Liu Wen-Jun. Research progress of mode-locked pulsed fiber lasers with high damage threshold saturable absorber. Acta Physica Sinica, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [4] Dai Chuan-Sheng, Dong Zhi-Peng, Lin Jia-Qiang, Yao Pei-Jun, Xu Li-Xin, Gu Chun. Passively Q-switched and mode-locked 1.9 μm Tm-doped fiber laser based on pure water as saturable absorber. Acta Physica Sinica, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [5] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [6] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan. Generation of ultra-fast pulse based on bismuth saturable absorber. Acta Physica Sinica, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [8] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [9] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [10] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [11] Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang. Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber. Acta Physica Sinica, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [12] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju. Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium. Acta Physica Sinica, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [13] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Wang Chun-Xiang, Yu Hui-Min, Hu Kai. Study on nonlinear surface waves along the boundary of LiNbO3 crystals. Acta Physica Sinica, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [14] Han Ge, Gong Wei, Ma Xin, Xiang Cheng-Zhi, Liang Ai-Lin, Zheng Yu-Xin. A ground-based differential absorption lidar for atmospheric vertical CO2 profiling. Acta Physica Sinica, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [15] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi, Zhang Zhen-Long. Simulation of small space debris impact inducing discharge using laser-induced plasma method. Acta Physica Sinica, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [16] Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei. PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP. Acta Physica Sinica, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [17] Dong Tai-Yuan, Ye Kun-Tao, Liu Wei-Qing. The current status of surface wave plasma source development. Acta Physica Sinica, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [18] Su Qian-Qian, Zhang Guo-Wen, Pu Ji-Xiong. The propagation characteristics of a Gaussian beam passing through the thick nonlinear medium with defects. Acta Physica Sinica, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [19] Fu Zheng-Ping, Lin Feng, Zhu Xing. Numerical study on the optical absorption of one dimension metallic gratings. Acta Physica Sinica, 2011, 60(11): 114213. doi: 10.7498/aps.60.114213
    [20] ZHANG QI-FENG, HOU SHI-MIN, ZHANG GENG-MIN, LIU WEI-MIN, XUE ZENG-QUAN, WU JIN-LEI. OPTICAL ABSORPTION OF Ag-BaO THIN FILM IN THE VISIBLE AND NEAR-INFRARED REGION WITH APPLIED ELECTRIC FIELD. Acta Physica Sinica, 2001, 50(3): 561-565. doi: 10.7498/aps.50.561
Metrics
  • Abstract views:  10974
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2020
  • Accepted Date:  13 May 2020
  • Available Online:  05 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回