Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of biaxial strain on the gas-sensing of monolayer GeSe

Lu Qun-Lin Yang Wei-Huang Xiong Fei-Bing Lin Hai-Feng Zhuang Qin-Qin

Citation:

Effect of biaxial strain on the gas-sensing of monolayer GeSe

Lu Qun-Lin, Yang Wei-Huang, Xiong Fei-Bing, Lin Hai-Feng, Zhuang Qin-Qin
PDF
HTML
Get Citation
  • The adsorptions of various gas molecules (H2, H2O, CO, NH3, NO, and NO2) on monolayer GeSe versus the external biaxial strain in a range of –8% to 8% are investigated by first-principles calculations. The band structures, the equilibrium heights, the adsorption energy, and the amount of charge transfer are determined. The calculated results show that monolayer GeSe changes from indirect-to-direct and semiconducting-to-metallic under a certain biaxial strain. The adsorbed gas molecules hardly change the band gap of monolayer GeSe even under a biaxial strain in the whole range from –8% to 8%. The calculated adsorption energies under different strains reveal that the external biaxial strain has no significant effect on the adsorption stability of the gas molecules on monolayer GeSe, so it seems impossible to promote the desorption of the gas molecules by applying strain. It is found that NO2 under the biaxial tensile strain of 8% tends to be bound with the monolayer GeSe by chemical bond which leads to being-difficult-to-desorb. Besides that case, the investigated gas molecules are physisorbed on the GeSe surface and have a certain probability of adsorption and desorption. The charge transfers of CO, NH3, NO and NO2 adsorbed systems under the biaxial strain from –8% to 8% change somehow but are still non-negligible, while for H2 and H2O, their charge transfers are too small to be detected by the monolayer-GeSe-based gas-sensor. Thus, due to the moderate adsorption energy and charge transfer, monolayer GeSe can be a promising candidate as a sensor for CO, NH3 and NO under the biaxial strain from –8% to 8%, and for NO2 in the range from –8% to 6%. It is worth noting that because of the appropriately lower adsorption energy and bigger charge transfer, a bigger biaxial compressive strain, ranging from –6% to –8%, can improve the response speed and sensibility to CO and NO of monolayer GeSe. Furthermore, the effect of the external biaxial strain on the adsorption stability and the charge transfer are discussed based on the two mechanisms of charge transfers, i.e. the traditional and the orbital mixing charge transfer theory. The charge transfer of NH3 is governed by mixing the molecular HOMO with the orbital of GeSe, while for CO, NO and NO2, their charge transfers are most likely determined by different mechanisms under different external strains, which results in different influences on the charge transfer. The present study would be valuable for fully excavating the gas-sensing potential of the two-dimensional GeSe, and then providing sufficient theoretical basis for designing high performance gas sensors based on two-dimensional materials.
      Corresponding author: Yang Wei-Huang, yangwh@hdu.edu.cn ; Zhuang Qin-Qin, 2010111008@xmut.edu.cn
    • Funds: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG19F040003), the National Natural Science Foundation of China (Grant No. 61704040), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2016J01684, 2018J01568), and the Education and Scientific Research Project for Young and Middle Aged Teachers of Fujian Province, China (Grant No. JAT190671)
    [1]

    Korotcenkov G 2007 Mater. Sci. Eng. B 139 1Google Scholar

    [2]

    Zhang R Q, Li B, Yang J L 2015 J. Phys. Chem. C 119 2871Google Scholar

    [3]

    Rastogi P, Kumar S, Bhowmick S, Agarwal A, Chauhant Y S 2014 J. Phys. Chem. C 118 30309Google Scholar

    [4]

    Pu H H, Rhim S H, Gajdardziksa-Josifovska M, Hirschmugl C J, Weinert M, Chen J H 2014 RSC Adv. 4 47481Google Scholar

    [5]

    Zhan B B, Li C, Yang J, Jenkins G, Huang W, Dong X C 2014 Small 10 4042Google Scholar

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [7]

    Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T 2013 Nano Lett. 13 668Google Scholar

    [8]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W, Tok A I, Zhang Q, Hua H 2012 Small 8 63Google Scholar

    [9]

    Yang S X, Yue Q, Cai H, Wu K D, Jiang C B, Tongay S 2016 J. Mater. Chem. C 4 248Google Scholar

    [10]

    Zhang Y H, Han L F, Xiao Y H, Jia D Z, Guo Z H, Li F 2013 Comp. Mater. Sci. 69 222Google Scholar

    [11]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Appl. Surf. Sci. 343 121Google Scholar

    [12]

    Rad A S, Abedini E 2016 Appl. Surf. Sci. 360 1041Google Scholar

    [13]

    Luo H, Cao Y J, Zhou J, Feng J M, Cao J M, Guo H 2016 Chem. Phys. Lett. 643 27Google Scholar

    [14]

    Van Quang V, Van Dung N, SyTrong N, Duc Hoa N, Van Duy N, Van Hieu N 2014 Appl. Phys. Lett. 105 013107Google Scholar

    [15]

    Xia Y, Wang J, Xu J L, Li X, Xie D, Xiang L, Komarneni S 2016 ACS Appl. Mater. Interfaces 8 35454Google Scholar

    [16]

    Kim J, Oh S D, Kim J H, Shin D H, Kim S, Choi S -H 2014 Sci. Rep. 4 5384Google Scholar

    [17]

    Fattah A, Khatami S, Mayorga-Martinez C C, Medina-Sanchez M, Baptista-Pires L, Merkoci A 2014 Small 10 4193Google Scholar

    [18]

    Singh A, Uddin M, Sudarshan T, Koley G 2014 Small 10 1555Google Scholar

    [19]

    Kim H Y, Lee K, McEvoy N, Yim C, Duesberg G S 2013 Nano Lett. 13 2182Google Scholar

    [20]

    Zhou C J, Zhu H L, Wu Y P, Lin W, Yang W H, Dong L X 2017 Mater. Chem. Phys. 198 49Google Scholar

    [21]

    Niu C P, Lan T S, Wang D W, Pan J B, Chu J F, Wang C Y, Yuan H, Yang A J, Wang X H, Rong M Z 2020 Appl. Surf. Sci. 520 146257Google Scholar

    [22]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [23]

    Song X F, Zhou W H, Liu X H, Gu Y, Zhang S L 2017 Phys. B 519 90Google Scholar

    [24]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [25]

    Zhou Y, Zhao M, Chen Z W, Shi Z M, Jiang Q 2018 Phys. Chem. Chem. Phys. 20 30290Google Scholar

    [26]

    Brahma M, Kabiraj A, Saha D, Mahapatra S 2018 Sci. Rep. 8 5993Google Scholar

    [27]

    Guo S Y, Yuan L, Liu X H, Zhou W H, Song X F, Zhang S L 2017 Chem. Phys. Lett. 686 83Google Scholar

    [28]

    Liu L, Yang Q, Wang Z P, Ye H Y, Chen X P, Fan X J, Zhang G Q 2018 Appl. Surf. Sci. 433 575Google Scholar

    [29]

    Wang J, Yang G F, Xue J J, Lei J M, Chen D J, Lu H, Zhang R, Zheng Y D 2018 IEEE Electron. Device Lett. 39 599Google Scholar

    [30]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [31]

    Ou J Z, Ge W Y, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y C, Fu Z Q, Chrimes A F, Wiodarski W, Russo S P, Li Y X, Kalantar-zadeh K 2015 ACS Nano 9 10313Google Scholar

    [32]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [33]

    Hu Z Y, Ding Y C, Hu X M, Zhou W H, Yu X C, Zhang S L 2019 Nanotechnology 30 252001Google Scholar

    [34]

    Wang K, Huang D W, Yu L, Feng K, Li L T, Harada T, Ikeda S, Jiang F 2019 ACS Catal. 9 3090Google Scholar

    [35]

    Zhuang Q Q, Yang W H, Lin W, Dong L X, Zhou C J 2019 NANO 14 1950131Google Scholar

    [36]

    左博敏, 袁健美, 冯志, 毛宇亮 2019 物理学报 68 113103Google Scholar

    Zuo B M, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Rochefort A, Wuest D 2009 Langmuir 25 210Google Scholar

    [40]

    Li M M, Zhang J, Li F J, Zhu F X, Zhang M, Zhao X F 2009 Phys. Status Solidi C 6 S90Google Scholar

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Monkhorst H J, Pack J D 1976 Phys.Rev. B 13 5188Google Scholar

    [43]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [44]

    Leenaerts O, Partoens B, Peeters F M 2008 Phys. Rev. B 77 125416Google Scholar

  • 图 1  (a) 一个4×4单层GeSe晶胞的俯视和侧视图; (b) 各气体分子在单层GeSe上稳定吸附时的结构示意图, 气体分子从左往右依次为H2, H2O, CO, NH3, NO, NO2; (c) 在单层GeSe的ab平面上施加双轴向应变示意图

    Figure 1.  (a) Top and side views of the pristine monolayer GeSe; (b) the most favorable configurations for H2, H2O, CO, NH3, NO and NO2 adsorbed on monolayer GeSe, respectively; (c) external biaxial strain applied on monolayer GeSe.

    图 2  双轴向应变ε为0, –2%, –6%, 4%, 8%时单层GeSe的能带结构图

    Figure 2.  Band structures of pristine monolayer GeSe at the biaxial stain of 0, –2%, –6%, 4% and 8%, respectively.

    图 3  在–8%—8%的双轴向应变范围内, 各气体吸附体系的特性与双轴向应变的关系曲线: (a) 带隙; (b) 平衡高度; (c) 吸附能; (d) 电荷转移量

    Figure 3.  The characteristics of different gas adsorbed systems versus the biaxial strain ranging from –8% to 8%: (a) energy bandgap; (b) equilibrium height; (c) adsorption energy; (d) amount of charge transfer.

    图 4  (a) 各气体分子吸附体系的费米能级与双轴向应变的关系曲线; (b)单层GeSe在–8%—8%双轴向应变范围内的费米能级、气体分子的HOMO和LUMO以及吸附体系的费米能级

    Figure 4.  (a) Fermi–level of different gas adsorbed systems versus the biaxial strain ranging from –8% to 8%; (b) Fermi-level of pristine monolayer GeSe under the biaxial strain from –8% to 8%, molecular HOMO and LUMO levels and Fermi-levels of the adsorbed systems.

    图 5  CO分子吸附体系在双轴向应变 (a) ε = 0和(b) ε = 8%下, NO2分子吸附体系在双轴向应变 (c) ε = 6%和(d) ε = 8%下2.0 × 10–3 e/Å3等能面的差分电荷密度分布图, 其中黄色和蓝色等能面分别表示电子的积聚和耗尽. 图中标出了电荷转移的方向和大小. 插图为单个气体分子的HOMO和LUMO

    Figure 5.  Side views of the differential charge densities (DCD) for CO adsorbed system at (a) ε = 0 and (b) ε = 8%, NO2 adsorbed system at (a) ε = 6% and (b) ε = 8%, respectively. The isosurface is taken as 2.0 × 10–3 e/Å3. The electron accumulation (depletion) regin on the DCD isosurface is indicated by yellow (blue). The direction (indicated by an arrow) and value of the charge transfer are shown. Insets show the HOMO and LUMO of a single gas molecule.

  • [1]

    Korotcenkov G 2007 Mater. Sci. Eng. B 139 1Google Scholar

    [2]

    Zhang R Q, Li B, Yang J L 2015 J. Phys. Chem. C 119 2871Google Scholar

    [3]

    Rastogi P, Kumar S, Bhowmick S, Agarwal A, Chauhant Y S 2014 J. Phys. Chem. C 118 30309Google Scholar

    [4]

    Pu H H, Rhim S H, Gajdardziksa-Josifovska M, Hirschmugl C J, Weinert M, Chen J H 2014 RSC Adv. 4 47481Google Scholar

    [5]

    Zhan B B, Li C, Yang J, Jenkins G, Huang W, Dong X C 2014 Small 10 4042Google Scholar

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [7]

    Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T 2013 Nano Lett. 13 668Google Scholar

    [8]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W, Tok A I, Zhang Q, Hua H 2012 Small 8 63Google Scholar

    [9]

    Yang S X, Yue Q, Cai H, Wu K D, Jiang C B, Tongay S 2016 J. Mater. Chem. C 4 248Google Scholar

    [10]

    Zhang Y H, Han L F, Xiao Y H, Jia D Z, Guo Z H, Li F 2013 Comp. Mater. Sci. 69 222Google Scholar

    [11]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Appl. Surf. Sci. 343 121Google Scholar

    [12]

    Rad A S, Abedini E 2016 Appl. Surf. Sci. 360 1041Google Scholar

    [13]

    Luo H, Cao Y J, Zhou J, Feng J M, Cao J M, Guo H 2016 Chem. Phys. Lett. 643 27Google Scholar

    [14]

    Van Quang V, Van Dung N, SyTrong N, Duc Hoa N, Van Duy N, Van Hieu N 2014 Appl. Phys. Lett. 105 013107Google Scholar

    [15]

    Xia Y, Wang J, Xu J L, Li X, Xie D, Xiang L, Komarneni S 2016 ACS Appl. Mater. Interfaces 8 35454Google Scholar

    [16]

    Kim J, Oh S D, Kim J H, Shin D H, Kim S, Choi S -H 2014 Sci. Rep. 4 5384Google Scholar

    [17]

    Fattah A, Khatami S, Mayorga-Martinez C C, Medina-Sanchez M, Baptista-Pires L, Merkoci A 2014 Small 10 4193Google Scholar

    [18]

    Singh A, Uddin M, Sudarshan T, Koley G 2014 Small 10 1555Google Scholar

    [19]

    Kim H Y, Lee K, McEvoy N, Yim C, Duesberg G S 2013 Nano Lett. 13 2182Google Scholar

    [20]

    Zhou C J, Zhu H L, Wu Y P, Lin W, Yang W H, Dong L X 2017 Mater. Chem. Phys. 198 49Google Scholar

    [21]

    Niu C P, Lan T S, Wang D W, Pan J B, Chu J F, Wang C Y, Yuan H, Yang A J, Wang X H, Rong M Z 2020 Appl. Surf. Sci. 520 146257Google Scholar

    [22]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [23]

    Song X F, Zhou W H, Liu X H, Gu Y, Zhang S L 2017 Phys. B 519 90Google Scholar

    [24]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [25]

    Zhou Y, Zhao M, Chen Z W, Shi Z M, Jiang Q 2018 Phys. Chem. Chem. Phys. 20 30290Google Scholar

    [26]

    Brahma M, Kabiraj A, Saha D, Mahapatra S 2018 Sci. Rep. 8 5993Google Scholar

    [27]

    Guo S Y, Yuan L, Liu X H, Zhou W H, Song X F, Zhang S L 2017 Chem. Phys. Lett. 686 83Google Scholar

    [28]

    Liu L, Yang Q, Wang Z P, Ye H Y, Chen X P, Fan X J, Zhang G Q 2018 Appl. Surf. Sci. 433 575Google Scholar

    [29]

    Wang J, Yang G F, Xue J J, Lei J M, Chen D J, Lu H, Zhang R, Zheng Y D 2018 IEEE Electron. Device Lett. 39 599Google Scholar

    [30]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [31]

    Ou J Z, Ge W Y, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y C, Fu Z Q, Chrimes A F, Wiodarski W, Russo S P, Li Y X, Kalantar-zadeh K 2015 ACS Nano 9 10313Google Scholar

    [32]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [33]

    Hu Z Y, Ding Y C, Hu X M, Zhou W H, Yu X C, Zhang S L 2019 Nanotechnology 30 252001Google Scholar

    [34]

    Wang K, Huang D W, Yu L, Feng K, Li L T, Harada T, Ikeda S, Jiang F 2019 ACS Catal. 9 3090Google Scholar

    [35]

    Zhuang Q Q, Yang W H, Lin W, Dong L X, Zhou C J 2019 NANO 14 1950131Google Scholar

    [36]

    左博敏, 袁健美, 冯志, 毛宇亮 2019 物理学报 68 113103Google Scholar

    Zuo B M, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Rochefort A, Wuest D 2009 Langmuir 25 210Google Scholar

    [40]

    Li M M, Zhang J, Li F J, Zhu F X, Zhang M, Zhao X F 2009 Phys. Status Solidi C 6 S90Google Scholar

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Monkhorst H J, Pack J D 1976 Phys.Rev. B 13 5188Google Scholar

    [43]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [44]

    Leenaerts O, Partoens B, Peeters F M 2008 Phys. Rev. B 77 125416Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Zhu Kai, Huang Can, Cao Bang-Jie, Pan Yan-Fei, Fan Ji-Yu, Ma Chun-Lan, Zhu Yan. First-principles study of role of Kitaev interaction in monolayer 1T-CoI2. Acta Physica Sinica, 2023, 72(24): 247101. doi: 10.7498/aps.72.20230909
    [3] Pan Feng-Chun, Lin Xue-Ling, Wang Xu-Ming. First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb. Acta Physica Sinica, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [6] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [7] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [9] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [10] Xuan Sheng-Jie, Liu Yan. Control of skyrmion movement in nanotrack by using periodic strain. Acta Physica Sinica, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [11] Pei Li, Wu Liang-Ying, Wang Jian-Shuai, Li Jing, Ning Ti-Gang. Phase shift chirped fiber Bragg grating based distributed strain and position sensing. Acta Physica Sinica, 2017, 66(7): 070702. doi: 10.7498/aps.66.070702
    [12] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [13] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [14] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [16] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [17] Shi Li-Chao, Zhang Wei, Jin Jie, Huang Yi-Dong, Peng Jiang-De. Fabrication of mid-infrared hollow-core Bragg fiber and it application in gas sensing. Acta Physica Sinica, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [19] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [20] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Band structure of strained Si/(111)Si1-xGex: a first principles investigation. Acta Physica Sinica, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
Metrics
  • Abstract views:  6506
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2020
  • Accepted Date:  26 May 2020
  • Available Online:  30 September 2020
  • Published Online:  05 October 2020

/

返回文章
返回