Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanisms of alpha particle induced soft errors in nanoscale static random access memories

Zhang Zhan-Gang Ye Bing Ji Qing-Gang Guo Jin-Long Xi Kai Lei Zhi-Feng Huang Yun Peng Chao He Yu-Juan Liu Jie Du Guang-Hua

Citation:

Mechanisms of alpha particle induced soft errors in nanoscale static random access memories

Zhang Zhan-Gang, Ye Bing, Ji Qing-Gang, Guo Jin-Long, Xi Kai, Lei Zhi-Feng, Huang Yun, Peng Chao, He Yu-Juan, Liu Jie, Du Guang-Hua
PDF
HTML
Get Citation
  • In this paper, the Am-241 is used as an alpha particle radioactive source to investigate the soft error mechanism in 65-nm and 90-nm static random accessmemory (SRAM). Combining reverse analysis, TRIM and CREME-MC Monte Carlo simulation, the energy transport process, deposited energy spectrum and cross-section characteristics of alpha particles in the device are revealed. The results show that the soft error sensitivity of the 65-nm device is much higher than that of the 90-nm device, and no flipping polarity is found. According to the real-time measured soft error rate at an altitude of 4300 m in Tibetan Yangbajing area, the thermal neutron sensitivity and alpha particle soft error rate, the overall soft error rate of 65-nm SRAM used at sea level of Beijing city is 429 FIT/Mb, and the contribution from alpha particles is 70.63%. Based on the results of reverse analysis, a three-dimensional simulation model of the device is constructed to study the influence of the incident angle of alpha particles on the single event upset characteristics. It is found that the corresponding deposition energy value at the peak of the number of particles in the sensitive region decreases by 40% with the incident angle increasing from 0° to 60°. While the single event upset cross sectionincreases by 79% due to the apparent single event upset edge effect in a sensitive region of the 65-nm device.
      Corresponding author: Lei Zhi-Feng, leizhifeng@ceprei.com ; Huang Yun, yunhuang@ceprei.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61704031), the Science and Technology Research Project of Guangdong Province, China (Grant Nos. 2017B090901068, 2017B090921001), and the Science and Technology Plan Project of Guangzhou, China (Grant No. 201707010186)
    [1]

    May T C, Woods M H 1979 IEEE Trans. Electron. Dev. ED-26 2

    [2]

    Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1−5, 2018 p34.4.1

    [3]

    Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar

    [4]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [5]

    JESD89 A Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006 [标准]

    [6]

    Auden E C, Quinn H M, Wender S A, O’ Donnell J M, Lisowski P W, George J S, Xu N, Black D A, Black J D 2020 IEEE Trans. Nucl. Sci. 67 29Google Scholar

    [7]

    Weulersse C, Houssany S, Guibbaud N, Segura-Ruiz J, Beaucour J, Miller F, Mazurek M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar

    [8]

    Autran J L, Munteanu D, Sauze S, Gasiot G, Roche P 2014 IEEE Radiation Effects Data Workshop (REDW) Paris, France, July 14−18, 2014 p1

    [9]

    Lee S, Uemura T, Monga U, Choi J H, Kim G, Pae S 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, April 2−6, 2017 pSE-1.1

    [10]

    Uemura T, Lee S, Min D, Moon I, Lim J, Lee S, Sagong H C, Pae S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 pSE.1-1

    [11]

    Fang Y, Oates A S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 p4C.2-1

    [12]

    Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y, En Y 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [13]

    The Stopping and Range of Ions in Matter, Ziegler J F http://www.srim.org/ [2019-7-3]

    [14]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [15]

    Adams J H, Barghouty A F, Mendenhall M H, Reed R A, Sierawski B D, Warren K M, Watts J W, Weller R A 2012 IEEE Trans. Nucl. Sci. 59 3141Google Scholar

    [16]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [17]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Warren K M, Sierawski B D, Massengill L W 2010 IEEE Trans. Nucl. Sci. 57 1726Google Scholar

    [18]

    Mendenhall M H, Weller R A 2012 Nucl. Instrum. Methods A 667 38Google Scholar

    [19]

    Zhang Z, Lei Z, En Y, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19−23, 2016 PH14

    [20]

    Gu S, Liu J, Zhao F Z, Zhang Z G, Bi J S, Geng C, Hou M D, Liu G, Liu T Q, Xi K 2015 Nucl. Instrum. Methods B 342 286Google Scholar

    [21]

    张战刚 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang Z G 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

  • 图 1  测试装置示意图

    Figure 1.  Schematic diagram of the test setup.

    图 2  蒙卡仿真得到的65 nm SRAM硅片表面α粒子分布图

    Figure 2.  α particle distribution on the silicon surface of the 65 nm SRAM.

    图 3  蒙卡仿真得到的90 nm SRAM硅片表面α粒子分布图

    Figure 3.  α particle distribution on the silicon surface of the 90 nm SRAM.

    图 4  初始写入图形对SEU截面的影响

    Figure 4.  Impact of initial data pattern on SEU cross section.

    图 5  65 nm SRAM的反向分析结果 (a)横切面; (b)存储区图像

    Figure 5.  Reverse analysis results of the 65 nm SRAM: (a) Cross section; (b) memory area image.

    图 6  TRIM仿真结果 (a) α粒子在器件中的传播轨迹; (b)器件横断面视角下的α粒子轨迹(粒子初始入射位置为中心零点处)

    Figure 6.  TRIM simulation results: (a) The propagation trajectory of alpha particles in the device; (b) the alpha particle trajectory from the cross-sectional view of the device (the initial incident position of the particle is at the zero center).

    图 7  65 nm工艺器件三维仿真模型

    Figure 7.  3 D simulation model of the 65 nm device.

    图 8  不同入射角度下器件灵敏区中的沉积能量谱

    Figure 8.  Deposited energy spectra in sensitive regions of devices at different incident angles.

    图 9  α粒子在硅材料中的LET值与能量的关系

    Figure 9.  Relationship between LET value and energy of α particle in silicon material.

    图 10  不同入射角度下单粒子翻转截面与临界能量的关系

    Figure 10.  Relationship between single event upset cross section and critical energy at different incident angles.

    图 11  不同入射角度下的单粒子翻转截面

    Figure 11.  Single event upset cross section at different incident angles.

    图 12  边缘效应示意图(未按实际比例绘图)[20,21]

    Figure 12.  Schematic diagram of edge effect (not scaled)[20,21].

    表 1  使用的放射源参数

    Table 1.  Parameters of the radioactive source being used.

    α粒子源Am-241
    放射率/粒子·2π–1·min–15.73 × 105
    尺寸圆柱体, Φ18 mm, 1 mm厚
    DownLoad: CSV

    表 2  被测器件参数

    Table 2.  Parameters of the devices under test.

    器件类型型号厂商工艺尺寸/nm测试容量/Mb工作电压/V硅片尺寸
    DDR-II SRAMCY7C1318CYPRESS651.1251.85 mm × 8 mm
    QDR-II SRAMCY7C1412CYPRESS65181.85 mm × 8 mm
    SRAMCY7C1019DCYPRESS9013.32 mm × 2 mm
    DownLoad: CSV

    表 3  SEU截面测试结果

    Table 3.  Test results of SEU cross section.

    器件测试容量/Mb粒子注量率/cm–2·s–1测试时长SEU数量SEU截面/cm2·bit–1
    CY7 C1318(65 nm)1.1251.33 × 1037 min 52 s2042.76 × 10–10
    CY7 C1412(65 nm)181.33 × 1033 min 41 s16132.91 × 10–10
    CY7 C1019 D(90 nm)17.42 × 10216 h1272.83 × 10–12
    DownLoad: CSV

    表 4  α粒子发射率等级及对应的软错误率

    Table 4.  The α particle emissivity level and corresponding soft error rate.

    α粒子发射率等级发射率/cm–2·h–165 nm SRAM软错误率/FIT·Mb–190 nm SRAM软错误率/FIT·Mb–1
    ULA~0.0013.03 × 1022.97
    Low Alpha (LA)~0.013.03 × 10329.7
    Uncontrolled Alpha~206.06 × 1065.94 × 104
    DownLoad: CSV

    表 5  65 nm SRAM在4300 m海拔试验地点及北京海平面使用时的软错误率及α粒子、高能中子和热中子贡献占比

    Table 5.  Soft error rates of the 65 nm SRAM at the experimental site with an altitude of 4300 m and sea level of Beijing city being used. The contribution rates of α particle, high energy neutron and thermal neutron are analyzed, respectively.

    粒子种类4300 m海拔处的软错误率/FIT·Mb–1占比(4300 m海拔)北京海平面处的软错误率/FIT·Mb–1占比(北京海平面)
    全部2356100%429100%
    α粒子30312.86%30370.63%
    高能中子205387.14%12629.37%
    热中子00%00%
    DownLoad: CSV

    表 6  65 nm SRAM的存储单元尺寸和灵敏区参数

    Table 6.  Memory cell size and SV parameters of the 65 nm SRAM device.

    器件存储单元尺寸灵敏区尺寸灵敏区厚度/μm重离子LET阈值/ MeV·cm2·mg-1临界能量/keV
    65 nm SRAM1 μm × 0.5 μm0.2 μm × 0.19 μm0.450.22[19]22.5[19]
    DownLoad: CSV
  • [1]

    May T C, Woods M H 1979 IEEE Trans. Electron. Dev. ED-26 2

    [2]

    Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1−5, 2018 p34.4.1

    [3]

    Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar

    [4]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [5]

    JESD89 A Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006 [标准]

    [6]

    Auden E C, Quinn H M, Wender S A, O’ Donnell J M, Lisowski P W, George J S, Xu N, Black D A, Black J D 2020 IEEE Trans. Nucl. Sci. 67 29Google Scholar

    [7]

    Weulersse C, Houssany S, Guibbaud N, Segura-Ruiz J, Beaucour J, Miller F, Mazurek M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar

    [8]

    Autran J L, Munteanu D, Sauze S, Gasiot G, Roche P 2014 IEEE Radiation Effects Data Workshop (REDW) Paris, France, July 14−18, 2014 p1

    [9]

    Lee S, Uemura T, Monga U, Choi J H, Kim G, Pae S 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, April 2−6, 2017 pSE-1.1

    [10]

    Uemura T, Lee S, Min D, Moon I, Lim J, Lee S, Sagong H C, Pae S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 pSE.1-1

    [11]

    Fang Y, Oates A S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 p4C.2-1

    [12]

    Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y, En Y 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [13]

    The Stopping and Range of Ions in Matter, Ziegler J F http://www.srim.org/ [2019-7-3]

    [14]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [15]

    Adams J H, Barghouty A F, Mendenhall M H, Reed R A, Sierawski B D, Warren K M, Watts J W, Weller R A 2012 IEEE Trans. Nucl. Sci. 59 3141Google Scholar

    [16]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [17]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Warren K M, Sierawski B D, Massengill L W 2010 IEEE Trans. Nucl. Sci. 57 1726Google Scholar

    [18]

    Mendenhall M H, Weller R A 2012 Nucl. Instrum. Methods A 667 38Google Scholar

    [19]

    Zhang Z, Lei Z, En Y, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19−23, 2016 PH14

    [20]

    Gu S, Liu J, Zhao F Z, Zhang Z G, Bi J S, Geng C, Hou M D, Liu G, Liu T Q, Xi K 2015 Nucl. Instrum. Methods B 342 286Google Scholar

    [21]

    张战刚 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang Z G 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

  • [1] Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua. Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit. Acta Physica Sinica, 2024, 73(6): 066103. doi: 10.7498/aps.73.20231564
    [2] Jiang Xin-Shuai, Luo Yin-Hong, Zhao Wen, Zhang Feng-Qi, Wang Tan. Influences of well contact on multiple-cell upsets in 28 nm SRAM. Acta Physica Sinica, 2023, 72(3): 036101. doi: 10.7498/aps.72.20221742
    [3] Wu Xiang-Feng, Wang Feng, Lin Zhan-Hong, Chen Luo-Yu, Yu Zhao-Ke, Wu Kai-Bang, Wang Zheng-Xiong. Numerical simulation of $\boldsymbol \alpha$ particle slowing-down process under CFETR scenario. Acta Physica Sinica, 2023, 72(21): 215209. doi: 10.7498/aps.72.20230700
    [4] Zhang Zhan-Gang, Yang Shao-Hua, Lin Qian, Lei Zhi-Feng, Peng Chao, He Yu-Juan. Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau. Acta Physica Sinica, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [5] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [6] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [7] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [8] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [9] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [10] Mechanisms of Alpha Particle Induced Soft Errors in Nanoscale Static Random Access Memories. Acta Physica Sinica, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [11] Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei. Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions. Acta Physica Sinica, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [12] Luo Yin-Hong, Guo Xiao-Qiang, Chen Wei, Guo Gang, Fan Hui. Energy and angular dependence of single event upsets in ESA SEU Monitor. Acta Physica Sinica, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [13] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [14] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] Ding Li-Li, Guo Hong-Xia, Chen Wei, Yan Yi-Hua, Xiao Yao, Fan Ru-Yu. Simulation study of the influence of ionizing irradiation on the single event upset vulnerability of static random access memory. Acta Physica Sinica, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [16] Ze Ren-De, Yang Tian-Li, Xiong Zong-Hua, Hao Fan-Hua, Yang Chao-Wen. 178Hfm2 isomer prepared by the bombardment of energetic α particles on metallic Yb foil. Acta Physica Sinica, 2010, 59(12): 8465-8470. doi: 10.7498/aps.59.8465
    [17] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [19] Li Hua. Monte Carlo simulation of the SRAM single event upset. Acta Physica Sinica, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [20] Zhang Qing-Xiang, Hou Ming-Dong, Liu Jie, Wang Zhi-Guang, Jin Yun-Fan, Zhu Zhi-Yong, Sun You-Mei. The dependence of single event upset cross-section on incident angle. Acta Physica Sinica, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
Metrics
  • Abstract views:  8245
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2019
  • Accepted Date:  23 April 2020
  • Available Online:  30 June 2020
  • Published Online:  05 July 2020

/

返回文章
返回