Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear plate theory of single-layered MoS2 with thermal effect

Huang Kun Wang Teng-Fei Yao Ji

Citation:

Nonlinear plate theory of single-layered MoS2 with thermal effect

Huang Kun, Wang Teng-Fei, Yao Ji
PDF
HTML
Get Citation
  • The single-layered molybdenum disulfide (${\rm{Mo}}{{\rm{S}}_2}$) is a two-dimensional nanomaterial with wide potential applications due to its excellent electrical and frictional properties. However, there have been few investigations of its mechanical properties up to now, and researchers have not paid attention to its nonlinear mechanical properties under the multi-fields co-existing environment. The present paper proposed a nonlinear plate theory to model the effect of finite temperatures on the single-layered ${\rm{Mo}}{{\rm{S}}_2}$. It is similar to the classical plate theory that both the in-plane stretching deformation and the out-of-plane bending deformation are taken into account in the new theory. However, the new theory consists of two independent in-plane mechanical parameters and two independent out-of-plane mechanical parameters. Neither of the two out-of-plane mechanical parameters in the new theory, which describe the resistance of ${\rm{Mo}}{{\rm{S}}_2}$ to the bending and the twisting, depends on the structure’s thickness. This reasonably avoids the Yakobson paradox: uncertainty stemming from the thickness of the single-layered two-dimensional structures will lead to the uncertainty of the structure’s out-of-plane stiffness. The new nonlinear plate equations are then solved approximately through the Galerkin method for the thermoelastic mechanical problems of the graphene and ${\rm{Mo}}{{\rm{S}}_2}$. The approximate analytic solutions clearly reveal the effects of temperature and structure stiffness on the deformations. Through comparing the results of two materials under combined temperature and load, it is found, for the immovable boundaries, that (1) the thermal stress, which is induced by the finite temperature, reduces the stiffness of ${\rm{Mo}}{{\rm{S}}_2}$, but increases the stiffness of graphene; (2) the significant difference between two materials is that the graphene’s in-plane stiffness is greater than the ${\rm{Mo}}{{\rm{S}}_2}$’s, but the graphene’s out-of-plane stiffness is less than the ${\rm{Mo}}{{\rm{S}}_2}$’s. Because the ${\rm{Mo}}{{\rm{S}}_2}$’s bending stiffness is much greater than graphene’s, the graphene’s deformation is greater than MoS2’s with a small load. However, the graphene’s deformation is less than the ${\rm{Mo}}{{\rm{S}}_2}$’s with a large load since the graphene’s in-plane stretching stiffness is greater than the MoS2’s. The present research shows that the applied axial force and ambient temperature can conveniently control the mechanical properties of single-layered two-dimensional nanostructures. The new theory provides the basis for the intensive research of the thermoelastic mechanical problems of ${\rm{Mo}}{{\rm{S}}_2}$, and one can easily apply the theory to other single-layered two-dimensional nanostructures.
      Corresponding author: Huang Kun, kunhuang2008@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12050001, 11562009)
    [1]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [2]

    Pumera M, Sofer Z 2017 Adv. Mater. 29 1605299Google Scholar

    [3]

    王靖慧, 焦丽颖 2017 科学通报 62 2158Google Scholar

    Wang J H, Jiao L Y 2017 Chin. Sci. Bull. 62 2158Google Scholar

    [4]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [5]

    Song X, Hu J, Zeng H 2013 J. Mater. Chem. C 1 2952Google Scholar

    [6]

    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y, Wu K 2016 Prog. Mater. Sci. 83 24Google Scholar

    [7]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [8]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [9]

    Hong Y, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M, Sun D, Sun D, Chen X, Chen H, Ren W 2020 Science 369 670Google Scholar

    [10]

    黄坤, 殷雅俊, 吴继业 2014 物理学报 63 156201Google Scholar

    Huang K, Yin Y J, Wu J Y 2014 Acta Phys. Sin. 63 156201Google Scholar

    [11]

    黄坤, 殷雅俊, 屈本宁, 吴继业 2014 力学学报 46 905Google Scholar

    Huang K, Yin Y J, Qu B N, Wu J Y 2014 Chin. J. Theoret. Appl. Mechan. 46 905Google Scholar

    [12]

    Cao K, Feng S, Han Y, Gao L, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [13]

    Li X, Zhu H 2015 J. Materiomics 1 33Google Scholar

    [14]

    Xiong S, Cao G 2016 Nanotechnology 27 105701Google Scholar

    [15]

    Jiang J, Qi Z, Park H, Rabczuk T 2013 Nanotechnology 24 435705Google Scholar

    [16]

    Late D, Shirodkar S, Waghmare U, Dravid V, Rao C 2014 Chemphyschem 15 1592Google Scholar

    [17]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Salehi-Khojin A, Robert F, Klie R 2018 Phys. Rev. Lett. 120 055902

    [18]

    Zhang R, Cao H, Jiang J 2020 Nanotechnology 31 405709Google Scholar

    [19]

    Akinwande D, Brennan C, Bunch J, Egberts P, Felts J, Gao H, Huang R, Kim J, Li T, Li Y 2017 Extreme Mech. Lett. 23 42

    [20]

    Wei Y, Yang R 2018 Natl. Sci. Rev. 6 324

    [21]

    Chen S, Chrzan D C 2011 Phys. Rev. B 84 5409

    [22]

    Jiang J, Wang B, Wang J 2015 J. Phys-Condens. Mat. 27 083001Google Scholar

    [23]

    Zhou L, Cao G 2016 Phys. Chem. Chem. Phys. 18 1657Google Scholar

    [24]

    Gao E, Xu Z 2015 J. Appl. Mech. 82 121012Google Scholar

    [25]

    Audoly B, Pomeau Y 2010 Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (New York: Oxford University Press) pp157-213

    [26]

    Kudin K, Scuseria G, Yakobson B 2001 Phys. Rev. B 64 235406Google Scholar

    [27]

    Landau L, Lifshitz E 1997 Theory of Elasticity 3rd (Oxford: Butterworth Heinemann) pp38−50

    [28]

    O'NEILL B 2006 Elementary Differential Geometry (Singapore: Elsevier) pp364−376

    [29]

    Eduard E, Krauthammer T 2001 Thin Plates and Shells: Theory, Analysis, and Applications (New York: Marcel Dekker) pp191−240

    [30]

    胡海昌 1981 弹性力学的变分原理及其应用 (北京: 科学出版社)pp322−342

    Hu H 1981 Variational Principles of Theory of Elasticity with Applications (Beijing: Science Press) pp322−342 (in Chinese)

    [31]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J, Wu J 2014 Nano Lett. 14 5097Google Scholar

    [32]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar

    [33]

    Xiong S, Cao G 2015 Nanotechnology 26 185705Google Scholar

    [34]

    Luongo A, Egidio A 2005 Nonlinear. Dynam. 41 171Google Scholar

    [35]

    Luongo A, D'Annibale F 2013 Int. J. Nonlin. Mech. 55 128Google Scholar

  • 图 1  单层${\rm{Mo}}{{\rm{S}}_2}$计算简图: (a) 顶视图; (b)侧视图; (c)等效板立体图; (d)边界载荷

    Figure 1.  Computational model of single-layer ${\rm{Mo}}{{\rm{S}}_2}$: (a) Top view of the structure; (b) Side view of the structure; (c) Stereo plate model of the structure; (d) Applied edge loads

    图 2  $a = b = 6\;{\rm{nm}}$, $N_{xx}^0 = N_{yy}^0 = 0$时, 结构在两个不同温度下的载荷变形幅值曲线

    Figure 2.  Loads-response curves with two temperatures for $a = b = 6\;{\rm{nm}}$ and $N_{xx}^0 = N_{yy}^0 = 0$.

    图 6  给定边界轴向力和温度条件下的载荷、几何尺寸及变形幅值曲面

    Figure 6.  Loads- dimensions-response surfaces with the given stretching stresses and the temperature.

    图 3  $a = b = 6\;{\rm{nm}}$, $T = 0\;\rm K$时, 在两个不同边界拉力下的载荷变形幅值曲线

    Figure 3.  Loads-response curves with two edge stretching stresses for $a = b = 6\;{\rm{nm}}$ and $T = 0\; \rm K$.

    图 4  $a = b = 6\;{\rm{nm}}$时, 在两个不同温度和边界载荷下的载荷变形幅值曲线

    Figure 4.  Loads-response curves with two edge stresses and two temperatures for $a = b = 6\;{\rm{nm}}$.

    图 5  $a = b = 6\;{\rm{nm}}$时, 给定边界轴向力条件下的载荷、温度及变形幅值曲面

    Figure 5.  Loads-temperatures-response surfaces with the given stretching stresses for $a = b = 6\;{\rm{nm}}$.

  • [1]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [2]

    Pumera M, Sofer Z 2017 Adv. Mater. 29 1605299Google Scholar

    [3]

    王靖慧, 焦丽颖 2017 科学通报 62 2158Google Scholar

    Wang J H, Jiao L Y 2017 Chin. Sci. Bull. 62 2158Google Scholar

    [4]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [5]

    Song X, Hu J, Zeng H 2013 J. Mater. Chem. C 1 2952Google Scholar

    [6]

    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y, Wu K 2016 Prog. Mater. Sci. 83 24Google Scholar

    [7]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [8]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [9]

    Hong Y, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M, Sun D, Sun D, Chen X, Chen H, Ren W 2020 Science 369 670Google Scholar

    [10]

    黄坤, 殷雅俊, 吴继业 2014 物理学报 63 156201Google Scholar

    Huang K, Yin Y J, Wu J Y 2014 Acta Phys. Sin. 63 156201Google Scholar

    [11]

    黄坤, 殷雅俊, 屈本宁, 吴继业 2014 力学学报 46 905Google Scholar

    Huang K, Yin Y J, Qu B N, Wu J Y 2014 Chin. J. Theoret. Appl. Mechan. 46 905Google Scholar

    [12]

    Cao K, Feng S, Han Y, Gao L, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [13]

    Li X, Zhu H 2015 J. Materiomics 1 33Google Scholar

    [14]

    Xiong S, Cao G 2016 Nanotechnology 27 105701Google Scholar

    [15]

    Jiang J, Qi Z, Park H, Rabczuk T 2013 Nanotechnology 24 435705Google Scholar

    [16]

    Late D, Shirodkar S, Waghmare U, Dravid V, Rao C 2014 Chemphyschem 15 1592Google Scholar

    [17]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Salehi-Khojin A, Robert F, Klie R 2018 Phys. Rev. Lett. 120 055902

    [18]

    Zhang R, Cao H, Jiang J 2020 Nanotechnology 31 405709Google Scholar

    [19]

    Akinwande D, Brennan C, Bunch J, Egberts P, Felts J, Gao H, Huang R, Kim J, Li T, Li Y 2017 Extreme Mech. Lett. 23 42

    [20]

    Wei Y, Yang R 2018 Natl. Sci. Rev. 6 324

    [21]

    Chen S, Chrzan D C 2011 Phys. Rev. B 84 5409

    [22]

    Jiang J, Wang B, Wang J 2015 J. Phys-Condens. Mat. 27 083001Google Scholar

    [23]

    Zhou L, Cao G 2016 Phys. Chem. Chem. Phys. 18 1657Google Scholar

    [24]

    Gao E, Xu Z 2015 J. Appl. Mech. 82 121012Google Scholar

    [25]

    Audoly B, Pomeau Y 2010 Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (New York: Oxford University Press) pp157-213

    [26]

    Kudin K, Scuseria G, Yakobson B 2001 Phys. Rev. B 64 235406Google Scholar

    [27]

    Landau L, Lifshitz E 1997 Theory of Elasticity 3rd (Oxford: Butterworth Heinemann) pp38−50

    [28]

    O'NEILL B 2006 Elementary Differential Geometry (Singapore: Elsevier) pp364−376

    [29]

    Eduard E, Krauthammer T 2001 Thin Plates and Shells: Theory, Analysis, and Applications (New York: Marcel Dekker) pp191−240

    [30]

    胡海昌 1981 弹性力学的变分原理及其应用 (北京: 科学出版社)pp322−342

    Hu H 1981 Variational Principles of Theory of Elasticity with Applications (Beijing: Science Press) pp322−342 (in Chinese)

    [31]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J, Wu J 2014 Nano Lett. 14 5097Google Scholar

    [32]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar

    [33]

    Xiong S, Cao G 2015 Nanotechnology 26 185705Google Scholar

    [34]

    Luongo A, Egidio A 2005 Nonlinear. Dynam. 41 171Google Scholar

    [35]

    Luongo A, D'Annibale F 2013 Int. J. Nonlin. Mech. 55 128Google Scholar

  • [1] Hu Jun-Ping, Liang Si-Si, Duan Hui-Xian, Tian Jun-Cheng, Chen Shuo, Dai Bo-Yang, Huang Chun-Lai, Liu Yu, Lv Ying, Wan Li-Jia, Ouyang Chu-Ying. Theoretical Prediction of Nitrogen-Oxygen-anchored Monatomic Copper-doped Graphene as an Anode for Alkaline Ion Batteries. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241461
    [2] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [3] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [4] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [5] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen. Theoretical study on ohmic contact between graphene and metal electrode. Acta Physica Sinica, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [7] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [9] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [10] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [11] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [12] Dong Gang, Liu Dang, Shi Tao, Yang Yin-Tang. Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone. Acta Physica Sinica, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [13] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [14] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [15] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [16] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [17] Chen Dong-Meng. Variation of graphene Raman G peak splitting with strain. Acta Physica Sinica, 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [18] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [20] Chen Wei-Lan, Gu Pei-Fu, Wang Ying, Zhang Yue-Guang, Liu Xu. Analysis of the thermal stress in infrared films. Acta Physica Sinica, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
Metrics
  • Abstract views:  4100
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2021
  • Accepted Date:  24 February 2021
  • Available Online:  30 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回