Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure

Gao Li-Ke Zhao Xian-Hao Diao Xin-Feng Tang Tian-Yu Tang Yan-Lin

Citation:

First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure

Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin
PDF
HTML
Get Citation
  • As an important perovskite solar cell (PSC) material, CsSnBr3 has been widely studied. Based on the density functional theory (DFT), the photoelectric properties of CsSnBr3 are studied by using the first-principles at different hydrostatic pressures. It is found that CsSnBr3 has an optimal optical band gap value of 1.34 eV under a pressure of 2.6 GPa, so only the photoelectric properties of CsSnBr3 under the hydrostatic pressure of 0 GPa and 2.6 GPa are studied, respectively. When the pressure is 2.6 GPa, CsSnBr3 has larger values of dielectric, conductivity, absorption coefficient and refractive index, the red-shifted absorption spectrum, and relatively small effective mass of electron and hole and exciton binding energy, indicating that CsSnBr3 is an efficient light absorbing material. According to the triple calculations of Born-Huang stability standard criterion, the tolerance factor T and phonon spectrum with or without virtual frequency, it is found that CsSnBr3 is stable under the pressure of 0 GPa and 2.6 GPa. According to the elastic modulus value of CsSnBr3 before and after pressure, it can be seen that the CsSnBr3 is soft, with good ductility and anisotropy. The Debye temperature and heat capacity of CsSnBr3, soon after it has been pressured, tend to be stable and are independent of temperature. The enthalpy and entropy increase with temperature increasing, and the increased amplitude is larger than those of the unpressured CsSnBr3. Gibbs free energy shows a decreasing trend, and the decrease is slightly faster when unpressured. This study shows that CsSnBr3 is a good photoelectric material after having been pressured hydrostatically, which is suitable for perovskite solar cells.
      Corresponding author: Tang Yan-Lin, tylgzu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164004, 61835003), the Photonic Science and Technology Innovation Team of Guizhou Province (Qianke Joint Talents Team), China (Grant No. [2015]4017), and the Industrial Research Project of Guizhou Province, China (Grant No. GY[2012]3060)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [5]

    Katan C, Mercier N, Even J 2019 Chem. Rev. 119 3140Google Scholar

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [8]

    Ehli C, Oelsner C, Guldi D M, Mateo-Alonso A, Prato M, Schmidt C, Backes C, Hauke F, Hirsch A 2009 Nat. Chem. 1 243Google Scholar

    [9]

    Piao Y M, Meany B, Powell L R, Valley N, Kwon H, Schatz G C, Wang Y H 2013 Nat. Chem. 5 840Google Scholar

    [10]

    Williams S T, Rajagopal A, Chueh C C, Jen A K Y 2016 J. Phys. Chem. Lett. 7 811Google Scholar

    [11]

    Boix P P, Agarwala S, Koh T M, Mathews N, Mhaisalkar S G 2015 J. Phys. Chem. Lett. 6 898Google Scholar

    [12]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar

    [13]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [14]

    Sutton R J, Filip M R, Haghighirad A A, Sakai N, Wenger B, Giustino F, Snaith H J 2018 ACS Energy Lett. 3 1787Google Scholar

    [15]

    Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 1Google Scholar

    [16]

    Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M 2017 Sci. Adv. 3 eaao4204Google Scholar

    [17]

    Perdew J P, Ruzsinszky A 2018 Eur. Phys. J. B 91 6Google Scholar

    [18]

    Cheng X R, Kuang X Y, Cheng H, Tian H, Yang S M, Yu M, Dou X L, Mao A J 2020 RSC Adv. 10 12432Google Scholar

    [19]

    Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857Google Scholar

    [20]

    Ou T J, Yan J J, Xiao C H, Shen W S, Liu C L, L iu, X Z, Han Y H, Ma Y Z, Gao C X 2016 Nanoscale 8 11426Google Scholar

    [21]

    Jaffe A, Lin Y, Umeyama D, Beavers C, Voss J, Mao W, Karunadasa H 2017 ACS Energy Lett. 253 1549Google Scholar

    [22]

    Schwarz U, Wagner F, Syassen K, Hillebrecht H 1996 Phys. Rev. B 53 19Google Scholar

    [23]

    Gupta N, Thiele G, Seo D K, Whangbo M H, Hillebrecht H 1998 Inorg. Chem. 37 407Google Scholar

    [24]

    Jing H J, Sa RJ, Xu G 2019 Chem. Phys. Lett. 732 136642Google Scholar

    [25]

    Coduri M, Strobel T A, Szafranski M, Katrusiak A, Mahata A, Cova F, Bonomi S, Mosconi E, De Angelis F, Malavasi L 2019 J. Phys. Chem. Lett. 10 7398Google Scholar

    [26]

    Yalameha S, Saeidi P, Nourbakhsh Z, Vaez A, Ramazani A 2020 J. Appl. Phys. 127 085102

    [27]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [29]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [30]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [31]

    Lang L, Yang J H, Liu H R, Xiang H J, Gong X G 2014 Phys. Lett. A 378 290Google Scholar

    [32]

    Qian J Y, Xu B, Tian W J 2016 Org. Electron. 37 61Google Scholar

    [33]

    Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819Google Scholar

    [34]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [35]

    Sahin S, Ciftci Y O, Colakoglu K, Korozlu N 2012 J. Alloys Compd. 529 1Google Scholar

    [36]

    Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 13Google Scholar

    [37]

    Rodina A V, Dietrich M, Göldner A, Eckey L, Meyer B K 2001 Phys. Rev. B 64 115204Google Scholar

    [38]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [39]

    Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O, Eperon G E, Wang J T W, Stergiopoulos T, Stranks S D, Snaith H J, Nicholas R J 2016 Energy Environ. Sci. 9 962Google Scholar

    [40]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [41]

    Li B, Long R, Xia Y, Mi Q 2018 Angew. Chem. 57 13154Google Scholar

    [42]

    Born M 1955 Am. J. Phys. 23 474Google Scholar

    [43]

    Goldschmidt V M 1926 Naturwissenschaften 14 477Google Scholar

    [44]

    Li C H, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z G 2008 Acta. Crystallogr., Sect. B 64 702Google Scholar

    [45]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [46]

    Ranganathan S I, Ostoja-Starzewski M 2008 J. Mech. Phys. Solids 56 2773

  • 图 1  CsSnBr3的晶体结构

    Figure 1.  Crystal of CsSnBr3.

    图 2  CsSnBr3在不同压力下的结构参数 (a)能量曲线; (b)晶格常数曲线; (c)体积曲线; (d)晶胞角曲线; (e) Sn—Br键长曲线; (f)应变曲线

    Figure 2.  Structure parameters of CsSnBr3 under different pressure conditions: (a) Curve of energy; (b) curve of the lattice constant (c) curve of volume; (d) curve of cell angle; (e) curve of bond length of Sn—Br; (f) curve of the strain.

    图 3  CsSnBr3在不同压力下的能带值

    Figure 3.  Band gap of CsSnBr3 under different pressure conditions.

    图 4  CsSnBr3的能带结构 (a)采用PBE和PBE + SOC计算得到的能带; (b) 0和2.6 GPa压力下采用HSE06计算得到的能带

    Figure 4.  Band structures of CsSnBr3: (a) Band structure calculated by PBE and PBE + SOC; (b) band structure calculated by HSE06 at the pressure of 0 and 2.6 GPa.

    图 5  CsSnBr3在 (a) 0 GPa和(b) 2.6 GPa压力下的态密度

    Figure 5.  Density of states (DOS) of CsSnBr3 under the pressure of (a) 0 GPa and (b) 2.6 GPa.

    图 6  Cs, Sn和Br原子之间电荷的转移

    Figure 6.  Charge transfer of the Cs, Sn and Br atoms.

    图 7  在0和2.6 GPa压力下CsSnBr3介电函数的(a)实部和(b)虚部

    Figure 7.  Dielectric function of CsSnBr3 of (a) real and (b) imaginary under the pressure of 0 and 2.6 GPa.

    图 8  在0和2.6 GPa压力下CsSnBr3电导率的(a)实部和(b)虚部

    Figure 8.  Conductivity of CsSnBr3 of (a) real and (b) imaginary under the pressure of 0 and 2.6 GPa.

    图 9  (a) CsSnBr3在0和2.6 GPa压力下的吸收系数; (b) CsSnBr3在0和2.6 GPa压下的折射率n和消光系数k

    Figure 9.  (a) Absorption of CsSnBr3 under the pressure of 0 and 2.6 GPa; (b) refractive index n and extinction coefficient k of CsSnBr3 under the pressure of 0 and 2.6 GPa.

    图 10  CsSnBr3在(a) 0 GPa和(b) 2.6 GPa压力下的声子谱

    Figure 10.  Phonon spectrum of CsSnBr3 under the pressure of (a) 0 GPa and (b) 2.6 GPa.

    图 11  在0和2.6 GPa压力下CsSnBr3的热力学性质 (a)德拜温度; (b)热容量; (c)焓、温度-熵和吉布斯自由能

    Figure 11.  Thermodynamic properties of CsSnBr3 of (a) Debye temperature, (b) heat capacity and (c) enthalpy, temperature-entropy and free energy under the pressure of 0 and 2.6 GPa.

    表 1  Findit找到的CsSnBr3的晶格参数与几何优化后的对比

    Table 1.  Lattice parameters of CsSnBr3 with Findit compared with geometry optimization (GO).

    a = b = cα = β = γ/(°)V3Space group
    Findit5.8090.00195.11$Pm\bar3m$
    GO5.9490.00209.58$ Pm\bar 3m $
    DownLoad: CSV

    表 2  在0和2.6 GPa压力下CsSnBr3的有效质量和激子结合能(质量的单位是自由电子的质量m0)

    Table 2.  Effective masses and exciton binding energy calculated for CsSnBr3 under the pressure of 0 and 2.6 GPa. Masses are given in units of the free electron mass m0.

    Pressure/GPame (RX)me (RM)me(RG)${\bar m_{\rm{e}}}$mh (RX)mh (RM)mh (RG)${\bar m_{\rm{h}}}$εsEb /meV
    00.5230.5240.1840.4100.0720.0750.0720.0733.858
    2.60.4180.4180.1430.3260.0520.0630.0510.0553.942
    DownLoad: CSV

    表 3  在0和2.6 GPa压力下CsSnBr3的弹性常数、体积模量(B)、剪切模量(G)和弹性各向异性(A)

    Table 3.  Calculated elastic constant, bulk modulus (B), shear modulus (G) and elastic anisotropy (A) of CsSnBr3 under the pressure of 0 and 2.6 GPa.

    Pressure/GPaC11C12C44BGB/GA
    037.406.325.2116.688.222.030.34
    2.667.3611.565.2030.1710.992.730.19
    DownLoad: CSV

    表 4  CsSnBr3的各元素的离子半径

    Table 4.  Ionic radium of CsSnBr3.

    Cs+Sn2+Br–T
    R/nm0.1670.1120.1960.83
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [5]

    Katan C, Mercier N, Even J 2019 Chem. Rev. 119 3140Google Scholar

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, Seo J 2018 Nat. Energy 3 682Google Scholar

    [8]

    Ehli C, Oelsner C, Guldi D M, Mateo-Alonso A, Prato M, Schmidt C, Backes C, Hauke F, Hirsch A 2009 Nat. Chem. 1 243Google Scholar

    [9]

    Piao Y M, Meany B, Powell L R, Valley N, Kwon H, Schatz G C, Wang Y H 2013 Nat. Chem. 5 840Google Scholar

    [10]

    Williams S T, Rajagopal A, Chueh C C, Jen A K Y 2016 J. Phys. Chem. Lett. 7 811Google Scholar

    [11]

    Boix P P, Agarwala S, Koh T M, Mathews N, Mhaisalkar S G 2015 J. Phys. Chem. Lett. 6 898Google Scholar

    [12]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar

    [13]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [14]

    Sutton R J, Filip M R, Haghighirad A A, Sakai N, Wenger B, Giustino F, Snaith H J 2018 ACS Energy Lett. 3 1787Google Scholar

    [15]

    Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 1Google Scholar

    [16]

    Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M 2017 Sci. Adv. 3 eaao4204Google Scholar

    [17]

    Perdew J P, Ruzsinszky A 2018 Eur. Phys. J. B 91 6Google Scholar

    [18]

    Cheng X R, Kuang X Y, Cheng H, Tian H, Yang S M, Yu M, Dou X L, Mao A J 2020 RSC Adv. 10 12432Google Scholar

    [19]

    Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857Google Scholar

    [20]

    Ou T J, Yan J J, Xiao C H, Shen W S, Liu C L, L iu, X Z, Han Y H, Ma Y Z, Gao C X 2016 Nanoscale 8 11426Google Scholar

    [21]

    Jaffe A, Lin Y, Umeyama D, Beavers C, Voss J, Mao W, Karunadasa H 2017 ACS Energy Lett. 253 1549Google Scholar

    [22]

    Schwarz U, Wagner F, Syassen K, Hillebrecht H 1996 Phys. Rev. B 53 19Google Scholar

    [23]

    Gupta N, Thiele G, Seo D K, Whangbo M H, Hillebrecht H 1998 Inorg. Chem. 37 407Google Scholar

    [24]

    Jing H J, Sa RJ, Xu G 2019 Chem. Phys. Lett. 732 136642Google Scholar

    [25]

    Coduri M, Strobel T A, Szafranski M, Katrusiak A, Mahata A, Cova F, Bonomi S, Mosconi E, De Angelis F, Malavasi L 2019 J. Phys. Chem. Lett. 10 7398Google Scholar

    [26]

    Yalameha S, Saeidi P, Nourbakhsh Z, Vaez A, Ramazani A 2020 J. Appl. Phys. 127 085102

    [27]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [29]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [30]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [31]

    Lang L, Yang J H, Liu H R, Xiang H J, Gong X G 2014 Phys. Lett. A 378 290Google Scholar

    [32]

    Qian J Y, Xu B, Tian W J 2016 Org. Electron. 37 61Google Scholar

    [33]

    Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819Google Scholar

    [34]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [35]

    Sahin S, Ciftci Y O, Colakoglu K, Korozlu N 2012 J. Alloys Compd. 529 1Google Scholar

    [36]

    Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 13Google Scholar

    [37]

    Rodina A V, Dietrich M, Göldner A, Eckey L, Meyer B K 2001 Phys. Rev. B 64 115204Google Scholar

    [38]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [39]

    Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O, Eperon G E, Wang J T W, Stergiopoulos T, Stranks S D, Snaith H J, Nicholas R J 2016 Energy Environ. Sci. 9 962Google Scholar

    [40]

    De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [41]

    Li B, Long R, Xia Y, Mi Q 2018 Angew. Chem. 57 13154Google Scholar

    [42]

    Born M 1955 Am. J. Phys. 23 474Google Scholar

    [43]

    Goldschmidt V M 1926 Naturwissenschaften 14 477Google Scholar

    [44]

    Li C H, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z G 2008 Acta. Crystallogr., Sect. B 64 702Google Scholar

    [45]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [46]

    Ranganathan S I, Ostoja-Starzewski M 2008 J. Mech. Phys. Solids 56 2773

  • [1] Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu. First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure. Acta Physica Sinica, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo. Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle. Acta Physica Sinica, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [3] Huang Jun-Hui, Li Yuan-He, Wang Jian, Li Shu-Lun, Ni Hai-Qiao, Niu Zhi-Chuan, Dou Xiu-Ming, Sun Bao-Quan. Exciton lifetime of quantum dots under hydrostatic pressure tuned scattering field Ag nanoparticles. Acta Physica Sinica, 2022, 71(24): 247302. doi: 10.7498/aps.71.20221344
    [4] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [5] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [6] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [7] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [8] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [9] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [10] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [11] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [12] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [15] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [16] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Pu Zhong-Sheng. Density functional theory study of the structures and properties of (Li3N)n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [19] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [20] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
Metrics
  • Abstract views:  5864
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2021
  • Accepted Date:  16 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回