Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator

Liang Shuai-Bo Yuan Tao Qiu Yang Zhang Zhen Miao Ya-Ning Han Jing-Feng Liu Xiu-Tong Yao Chun-Li

Citation:

Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator

Liang Shuai-Bo, Yuan Tao, Qiu Yang, Zhang Zhen, Miao Ya-Ning, Han Jing-Feng, Liu Xiu-Tong, Yao Chun-Li
PDF
HTML
Get Citation
  • As a new energy conversion device that can convert mechanical energy into electrical energy, triboelectric nanogenerator has attracted extensive attention since its invention. However, its environmental performance is limited because the raw materials are mostly synthetic polymer materials. Using green and environmentally friendly cellulose materials to prepare triboelectric nanogenerators is one of the important ways to solve the above problems. In this study, cellulose/barium titanate composite paper is prepared by using bamboo cellulose and barium carbonate (BaTiO3) as raw materials and combining wet papermaking and doping modification. The paper based triboelectric nanogenerator (C/BT-TENG) is constructed by using the cellulose/barium titanate composite paper as a positive friction layer. The results show that the addition of BaTiO3 significantly improves the relative dielectric constant of the composite paper, and the output performance of C/BT-TENG increases with the augment of BaTiO3 doping amount. When the doping amount is 4%, the open-circuit voltage and short-circuit current of C/BT-TENG reach the maximum values of 118.5 V and 13.51 µA, respectively, which are 51.3% and 41.2% higher than when pure cellulose paper is used as the positive friction layer. The mechanism of dielectric regulation to improve the C/BT-TENG output performance is analyzed by the modeling method. In addition, the C/BT-TENG has a good output performance and operation stability. When the load resistance is 5 MΩ, the maximum output power density of C/BT-TENG reaches 0.36 W/m2, simplying a good application prospect.
      Corresponding author: Yao Chun-Li, chunliyao2006@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFD0600804), the National Natural Science Foundation of China (Grant No. 31470605) and the Project 948 of State Forestry Administration, China (Grant No. 20140436).
    [1]

    Meyar-Naimi H, Vaez-Zadeh S 2012 Energ. Policy 43 351Google Scholar

    [2]

    Goldemberg J 2006 Energ. Policy 34 2185Google Scholar

    [3]

    Bai Y X, Shen B Y, Zhang S L, Zhu Z X, Sun S L, Gao J, Li B H, Wang Y, Zhang R F, Wei F 2019 Adv. Mater. 31 1800680Google Scholar

    [4]

    Jie Y, Jia X T, Zou J D, Chen Y D, Wang N, Wang Z L, Cao X 2018 Adv. Energy Mater. 8 1703133

    [5]

    Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y, Wang Z L 2016 Nat. Commun. 7 1Google Scholar

    [6]

    Wang Z L 2020 Adv. Energy Mater. 10 2000137Google Scholar

    [7]

    Shang W Y, Gu G Q, Zhang W H, Luo H C, Wang T Y, Zhang B, Guo J M, Cui P, Yang F, Cheng G, Du Z L 2021 Nano Energy 82 105725Google Scholar

    [8]

    Qin H F, Gu G Q, Shang W Y, Luo H C, Zhang W H, Cui P, Zhang B, Guo J M, Cheng G, Du Z L 2020 Nano Energy 68 104372Google Scholar

    [9]

    Qin H F, Cheng G, Zi Y L, Gu G Q, Zhang B, Shang W Y, Yang F, Yang J J, Du Z L, Wang Z L 2018 Adv. Funct. Mater. 28 1805216Google Scholar

    [10]

    Zhang H, Quan L W, Chen J K, Xu C K, Zhang C H, Dong S R, Lu C F, Luo J K 2019 Nano Energy 56 700Google Scholar

    [11]

    Singh M, Sheetal A, Singh H, Sawhney R S, Kaur J 2020 J. Electron. Mater. 49 3409Google Scholar

    [12]

    Kwak S S, Kim S M, Ryu H, Kim J, Khan U, Yoon H J, Jeong Y H, Kim S W 2019 Energy Environ. Sci. 12 3156Google Scholar

    [13]

    Xu G P, Zheng Y B, Feng Y G, Ma S C, Luo N, Feng M, Chen S G, Wang D 2021 Sci. China Technol. Sc. 64 2003Google Scholar

    [14]

    Landauer J, Aigner F, Kuhn M, Foerst P 2019 Adv. Powder Technol. 30 1099Google Scholar

    [15]

    Kang H, Kim H T, Woo H J, Kim H, Kim D H, Lee S, Kim S, Song Y J, Kim S W, Cho J H 2019 Nano Energy 58 227Google Scholar

    [16]

    Chao S, Ouyang H, Jiang D, Fan Y, Li Z 2021 Eco. Mat. 3 e12072Google Scholar

    [17]

    Pang B, Jiang G Y, Zhou J H, Zhu Y, Cheng W K, Zhao D W, Wang K J, Xu G W, Yu H P 2021 Adv. Electron. Mater. 7 2000944Google Scholar

    [18]

    Kim I, Jeon H, Kim D, You J, Kim D 2018 Nano Energy 53 975Google Scholar

    [19]

    Kafy A, Sadasivuni K K, Akther A, Min S K, Kim J 2015 Mater. Lett. 159 20Google Scholar

    [20]

    Darabi S, Hummel M, Rantasalo S, Rissanen M, Mansson I O, Hilke H, Hwang B, Skrifvars M, Hamedi M M, Sixta H, Lund A, Muller C 2020 Acs Appl. Mater. Inter. 12 56403Google Scholar

    [21]

    Yao C H, Hernandez A, Yu Y H, Cai Z Y, Wang X D 2016 Nano Energy 30 103Google Scholar

    [22]

    Diaz A F, Felix-Navarro R M 2004 J. Electrostat. 62 277Google Scholar

    [23]

    Yu A F, Zhu Y X, Wang W, Zhai J Y 2019 Adv. Funct. Mater. 29 1900098Google Scholar

    [24]

    Shao J J, Jiang T, Wang Z L 2020 Sci. China Technol. Sc. 63 1087Google Scholar

    [25]

    Min G, Manjakkal L, Mulvihill D M, Dahiya R S 2020 IEEE Sens. J. 20 6856Google Scholar

    [26]

    Wu C, Kim T W, Choi H Y 2017 Nano Energy 32 542Google Scholar

    [27]

    Wang X Z, Yang B, Liu J Q, Zhu Y B, Yang C S, He Q 2016 Sci. Rep. 6 1Google Scholar

    [28]

    Ba Y Y, Bao J F, Deng H T, Wang Z Y, Li X W, Gong T X, Huang W, Zhang X S 2020 Acs Appl. Mater. Inter. 12 42859Google Scholar

    [29]

    Jia C, Shao Z Q, Fan H Y, Feng R, Wang F J, Wang W J, Wang J Q, Zhang D L, Lü Y Y 2016 Compos. Part A-Appl. S 86 1Google Scholar

    [30]

    Ma M Y, Kang Z, Liao Q L, Zhang Q, Gao F F, Zhao X, Zhang Z, Zhang Y 2018 Nano Res. 11 2951Google Scholar

    [31]

    Li W B, Zhou D, Pang L X, Xu R, Guo H H 2017 J. Mater. Chem. A 5 19607Google Scholar

    [32]

    Zhang X, Lü S S, Lu X C, Yu H, Huang T, Zhang Q H, Zhu M F 2020 Nano Energy 75 104894Google Scholar

    [33]

    Sriphan S, Nawanil C, Vittayakorn N 2018 Ceram. Int. 44 S38Google Scholar

    [34]

    Dudem B, Kim D H, Bharat L K, Yu J S 2018 Appl. Energ. 230 865Google Scholar

    [35]

    Chen J, Guo H Y, He X M, Liu G L, Xi Y, Shi H F, Hu C G 2016 Acs Appl. Mater. Inter. 8 736Google Scholar

    [36]

    Zhang W H, Gu G Q, Qin H F, Li S M, Shang W Y, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2020 Nano Energy 77 105108Google Scholar

    [37]

    Zhang W H, Gu G Q, Shang W Y, Luo H C, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2021 Nano Energy 86 106056Google Scholar

    [38]

    Song H M, Yu H W, Zhu L J, Xue L X, Wu D C, Chen H 2017 React. Funct. Polym. 114 110Google Scholar

    [39]

    Xiao S H, Jiang W F 2012 Int. J. Min. Met. Mater. 19 762Google Scholar

    [40]

    Chen H M, Xu Y, Zhang J S, Wu W T, Song G F 2018 Nanoscale Res. Lett. 13 1Google Scholar

    [41]

    Wang Z L 2017 Mater. Today 20 74Google Scholar

    [42]

    Wang Z L, Chen J, Lin L 2015 Energy Environ. Sci. 8 2250Google Scholar

    [43]

    Shi Y X, Wang F, Tian J W, Li S Y, Fu E G, Nie J H, Lei R, Ding Y F, Chen X Y, Wang Z L 2021 Sci. Adv. 7 eabe2943Google Scholar

    [44]

    Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L 2020 Adv. Mater. 32 1905696Google Scholar

    [45]

    Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G, Wang Z L 2020 Energy Environ. Sci. 13 896Google Scholar

  • 图 1  (a)竹材多级结构示意图; (b) C/BT复合纸制备流程示意图; (c) C/BT-TENG结构示意图

    Figure 1.  (a) Diagram of hierarchical structure of bamboo; (b) schematic illustration of the preparation of C/BT composite paper; (c) structure diagram of C/BT-TENG.

    图 2  (a) C/BT-4复合纸表面SEM图; (b) BaTiO3与纤维之间的氢键示意图; C/BT-4复合纸表面(c) Ti元素和(d) Ba元素的EDS能谱图

    Figure 2.  (a) The surface SEM image of C/BT-4 composite paper; (b) diagram of hydrogen bond between BaTiO3 and fiber; EDS spectrum of (c) Ti and (d) Ba on C/BT-4 composite paper surface.

    图 3  (a) PTFE表面SEM图(右上角插图为其光学照片); (b) PTFE的红外光谱图; (c) BaTiO3颗粒的SEM图(右上角插图为其光学照片); (d) BaTiO3的X射线衍射图

    Figure 3.  (a) The surface SEM image of PTFE (The illustration in the upper right corner is its optical photo); (b) the infrared spectrogram of PTFE; (c) the SEM image of BaTiO3 particles (The illustration in the upper right corner is its optical photo); (d) X-ray diffraction pattern of BaTiO3.

    图 4  不同BaTiO3含量C/BT复合纸的应力-应变曲线

    Figure 4.  Tensile stress-strain curves of C/BT composite paper with different BaTiO3 content.

    图 5  不同BaTiO3含量C/BT复合纸作为正极摩擦层的C/BT-TENG的(a)开路电压和(b)短路电流; 不同BaTiO3含量C/BT复合纸的(c)相对介电常数和(d)介电损耗角正切随频率的变化情况

    Figure 5.  (a) Open circuit voltage and (b) short circuit current of C/BT-TENG with C/BT composite paper with different BaTiO3 content as the positive friction layer; frequency dependence of (c) dielectric constant and (d) dielectric loss tangent of C/BT composite paper with different BaTiO3 content.

    图 6  (a) 400倍和(b) 4000倍下C/BT-5复合纸表面SEM图; C/BT-5复合纸表面(c) Ti元素和(d) Ba元素的EDS能谱图

    Figure 6.  The surface SEM image of (a) low and (b) high magnification showing the C/BT-5 composite paper surface; EDS spectrum of (c) Ti and (d) Ba on C/BT-5 composite paper surface.

    图 7  C/BT-TENG的等效电路模型

    Figure 7.  Schematic diagram and an equivalent circuit model of the C/BT-TENG.

    图 8  C/BT-TENG在不同大小外力下的(a)开路电压和(b)短路电流; (c) C/BT-TENG的开路电压与外力大小的线性拟合; (d) C/BT-TENG在5000次连续循环工作过程中的输出电压

    Figure 8.  (a) Open circuit voltage and (b) short circuit current of C/BT-TENG under different external forces; (c) linear fit between open circuit voltage of C/BT-TENG and external force; (d) the output voltage of C/BT-TENG during 5000 continuous cycles.

    图 9  C/BT-TENG在不同外接负载电阻下的(a)输出电压-电流和(b)输出功率

    Figure 9.  (a) Output voltage-current and (b) output power of C/BT-TENG with external resistances.

    图 10  C/BT-TENG的工作机理示意图

    Figure 10.  The schematic illustration showing the working mechanism of the C/BT-TENG.

  • [1]

    Meyar-Naimi H, Vaez-Zadeh S 2012 Energ. Policy 43 351Google Scholar

    [2]

    Goldemberg J 2006 Energ. Policy 34 2185Google Scholar

    [3]

    Bai Y X, Shen B Y, Zhang S L, Zhu Z X, Sun S L, Gao J, Li B H, Wang Y, Zhang R F, Wei F 2019 Adv. Mater. 31 1800680Google Scholar

    [4]

    Jie Y, Jia X T, Zou J D, Chen Y D, Wang N, Wang Z L, Cao X 2018 Adv. Energy Mater. 8 1703133

    [5]

    Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y, Wang Z L 2016 Nat. Commun. 7 1Google Scholar

    [6]

    Wang Z L 2020 Adv. Energy Mater. 10 2000137Google Scholar

    [7]

    Shang W Y, Gu G Q, Zhang W H, Luo H C, Wang T Y, Zhang B, Guo J M, Cui P, Yang F, Cheng G, Du Z L 2021 Nano Energy 82 105725Google Scholar

    [8]

    Qin H F, Gu G Q, Shang W Y, Luo H C, Zhang W H, Cui P, Zhang B, Guo J M, Cheng G, Du Z L 2020 Nano Energy 68 104372Google Scholar

    [9]

    Qin H F, Cheng G, Zi Y L, Gu G Q, Zhang B, Shang W Y, Yang F, Yang J J, Du Z L, Wang Z L 2018 Adv. Funct. Mater. 28 1805216Google Scholar

    [10]

    Zhang H, Quan L W, Chen J K, Xu C K, Zhang C H, Dong S R, Lu C F, Luo J K 2019 Nano Energy 56 700Google Scholar

    [11]

    Singh M, Sheetal A, Singh H, Sawhney R S, Kaur J 2020 J. Electron. Mater. 49 3409Google Scholar

    [12]

    Kwak S S, Kim S M, Ryu H, Kim J, Khan U, Yoon H J, Jeong Y H, Kim S W 2019 Energy Environ. Sci. 12 3156Google Scholar

    [13]

    Xu G P, Zheng Y B, Feng Y G, Ma S C, Luo N, Feng M, Chen S G, Wang D 2021 Sci. China Technol. Sc. 64 2003Google Scholar

    [14]

    Landauer J, Aigner F, Kuhn M, Foerst P 2019 Adv. Powder Technol. 30 1099Google Scholar

    [15]

    Kang H, Kim H T, Woo H J, Kim H, Kim D H, Lee S, Kim S, Song Y J, Kim S W, Cho J H 2019 Nano Energy 58 227Google Scholar

    [16]

    Chao S, Ouyang H, Jiang D, Fan Y, Li Z 2021 Eco. Mat. 3 e12072Google Scholar

    [17]

    Pang B, Jiang G Y, Zhou J H, Zhu Y, Cheng W K, Zhao D W, Wang K J, Xu G W, Yu H P 2021 Adv. Electron. Mater. 7 2000944Google Scholar

    [18]

    Kim I, Jeon H, Kim D, You J, Kim D 2018 Nano Energy 53 975Google Scholar

    [19]

    Kafy A, Sadasivuni K K, Akther A, Min S K, Kim J 2015 Mater. Lett. 159 20Google Scholar

    [20]

    Darabi S, Hummel M, Rantasalo S, Rissanen M, Mansson I O, Hilke H, Hwang B, Skrifvars M, Hamedi M M, Sixta H, Lund A, Muller C 2020 Acs Appl. Mater. Inter. 12 56403Google Scholar

    [21]

    Yao C H, Hernandez A, Yu Y H, Cai Z Y, Wang X D 2016 Nano Energy 30 103Google Scholar

    [22]

    Diaz A F, Felix-Navarro R M 2004 J. Electrostat. 62 277Google Scholar

    [23]

    Yu A F, Zhu Y X, Wang W, Zhai J Y 2019 Adv. Funct. Mater. 29 1900098Google Scholar

    [24]

    Shao J J, Jiang T, Wang Z L 2020 Sci. China Technol. Sc. 63 1087Google Scholar

    [25]

    Min G, Manjakkal L, Mulvihill D M, Dahiya R S 2020 IEEE Sens. J. 20 6856Google Scholar

    [26]

    Wu C, Kim T W, Choi H Y 2017 Nano Energy 32 542Google Scholar

    [27]

    Wang X Z, Yang B, Liu J Q, Zhu Y B, Yang C S, He Q 2016 Sci. Rep. 6 1Google Scholar

    [28]

    Ba Y Y, Bao J F, Deng H T, Wang Z Y, Li X W, Gong T X, Huang W, Zhang X S 2020 Acs Appl. Mater. Inter. 12 42859Google Scholar

    [29]

    Jia C, Shao Z Q, Fan H Y, Feng R, Wang F J, Wang W J, Wang J Q, Zhang D L, Lü Y Y 2016 Compos. Part A-Appl. S 86 1Google Scholar

    [30]

    Ma M Y, Kang Z, Liao Q L, Zhang Q, Gao F F, Zhao X, Zhang Z, Zhang Y 2018 Nano Res. 11 2951Google Scholar

    [31]

    Li W B, Zhou D, Pang L X, Xu R, Guo H H 2017 J. Mater. Chem. A 5 19607Google Scholar

    [32]

    Zhang X, Lü S S, Lu X C, Yu H, Huang T, Zhang Q H, Zhu M F 2020 Nano Energy 75 104894Google Scholar

    [33]

    Sriphan S, Nawanil C, Vittayakorn N 2018 Ceram. Int. 44 S38Google Scholar

    [34]

    Dudem B, Kim D H, Bharat L K, Yu J S 2018 Appl. Energ. 230 865Google Scholar

    [35]

    Chen J, Guo H Y, He X M, Liu G L, Xi Y, Shi H F, Hu C G 2016 Acs Appl. Mater. Inter. 8 736Google Scholar

    [36]

    Zhang W H, Gu G Q, Qin H F, Li S M, Shang W Y, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2020 Nano Energy 77 105108Google Scholar

    [37]

    Zhang W H, Gu G Q, Shang W Y, Luo H C, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2021 Nano Energy 86 106056Google Scholar

    [38]

    Song H M, Yu H W, Zhu L J, Xue L X, Wu D C, Chen H 2017 React. Funct. Polym. 114 110Google Scholar

    [39]

    Xiao S H, Jiang W F 2012 Int. J. Min. Met. Mater. 19 762Google Scholar

    [40]

    Chen H M, Xu Y, Zhang J S, Wu W T, Song G F 2018 Nanoscale Res. Lett. 13 1Google Scholar

    [41]

    Wang Z L 2017 Mater. Today 20 74Google Scholar

    [42]

    Wang Z L, Chen J, Lin L 2015 Energy Environ. Sci. 8 2250Google Scholar

    [43]

    Shi Y X, Wang F, Tian J W, Li S Y, Fu E G, Nie J H, Lei R, Ding Y F, Chen X Y, Wang Z L 2021 Sci. Adv. 7 eabe2943Google Scholar

    [44]

    Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L 2020 Adv. Mater. 32 1905696Google Scholar

    [45]

    Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G, Wang Z L 2020 Energy Environ. Sci. 13 896Google Scholar

  • [1] Zhang Yu-Ye, Zhang Yi-Yi, Wei Wen-Chang, Su Zhi-Cheng, Lan Dan-Quan, Luo Shi-Hao. Molecular dynamics simulation of mechanical and thermal properties of nano-zinc oxide modified cellulose insulating paper. Acta Physica Sinica, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [2] Deng Hao-Cheng, Li Yi, Tian Shuang-Shuang, Zhang Xiao-Xing, Xiao Song. Dielectric materials for high-performance triboelectric nanogenerators. Acta Physica Sinica, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [3] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [4] Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor. Acta Physica Sinica, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [5] Shen Mao-Liang, Zhang Yan. Flexible sensor and energy storage device based on piezoelectric nanogenerator. Acta Physica Sinica, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [6] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] Cao Jie, Gu Wei-Guang, Qu Zhao-Qi, Zhong Yan, Cheng Guang-Gui, Zhang Zhong-Qiang. Design and research of non-contact triboelectric nanogenerator based on changing electrostatic field. Acta Physica Sinica, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [8] Ding Ya-Fei, Chen Xiang-Yu. Triboelectric nanogenerator based wearable energy harvesting devices. Acta Physica Sinica, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [9] Jing Qi, Li Xiao-Juan. Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity. Acta Physica Sinica, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [10] Sun Zhi-Zheng, Xun Wei, Zhang Jia-Yong, Liu Chuan-Yang, Zhong Jia-Lin, Wu Yin-Zhong. Optical properties of BaTiO3 and its volume effects. Acta Physica Sinica, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [11] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [12] Cheng Guang-Gui, Zhang Wei, Fang Jun, Jiang Shi-Yu, Ding Jian-Ning, Noshir S. Pesika, Zhang Zhong-Qiang, Guo Li-Qiang, Wang Ying. Fabrication of triboelectric nanogenerator with textured surface and its electric output performance. Acta Physica Sinica, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [13] Liu Yong-Guang, Kang Ai-Guo, Zhang Shao-Fei, Hou Zhi-Wen, Liu Wen-Bin. Theoretical analysis on ferroelectricity critical dimension of BaTiO3 nanoparticles. Acta Physica Sinica, 2015, 64(17): 177702. doi: 10.7498/aps.64.177702
    [14] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [15] Wang Pei-Ji, Zhou Zhong-Xiang, Su Yan, Rong Zhen-Yu, Zhao Peng, Zhang Feng-Jun. Influence of tantalum doping on the thermal conduction of BaTiO3 materials. Acta Physica Sinica, 2006, 55(4): 1959-1964. doi: 10.7498/aps.55.1959
    [16] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [17] Li Zhi-Qiang, Lu Xia-Lian, Chen Min, He Shan, Li Jing-De. . Acta Physica Sinica, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
    [18] LIU LI-WEI, WANG ZUO-WEI, ZHOU LU-WEI, WANG ZHI-JIN, GAO GUANG-JUN, LIU XIAO-JUN. SQUEEZE FLOW VISCOELASTICITY OF ELECTRORHEOLOGICAL FLUIDS BASED ON MICROCRYSTAL LINE CELLULOSE. Acta Physica Sinica, 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [19] WANG GUO-PING, GUO LU-RONG, CHEN QI-RUI, DAI CHAO-MING, HE LONG-QING. RED SENSITIVITY OF DICHROMATED CELLULOSE TRIACETATE HOLOGRAPHIC MATERIAL. Acta Physica Sinica, 1994, 43(10): 1593-1597. doi: 10.7498/aps.43.1593
    [20] . Acta Physica Sinica, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
Metrics
  • Abstract views:  6839
  • PDF Downloads:  148
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2021
  • Accepted Date:  18 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回