Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mobility edges and reentrant localization induced by superradiance

Wu Jin Lu Zhan-Peng Xu Zhi-Hao Guo Li-Ping

Citation:

Mobility edges and reentrant localization induced by superradiance

Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping
PDF
HTML
Get Citation
  • We study a Bose-Einstein condensate trapped by a ladder lattice in a high-fitness cavity. The ladder lattice is loaded in the $x\text-y$ plane and the cavity is along the x direction. A pump laser shines on atoms from the z direction. Under the mean-field approximation, we consider the emergence of the quasi-periodic potentials induced by superradiance in the ladder lattice, which is described by $\hat{H}_{\text{MF}}=\hat{H}_{\text{Lad}}+\hat{V}_{\text{eff}}$ with the effective potential $\hat{V}_{\text{eff}}(\alpha)={\displaystyle \sum\nolimits_{i = 1}^{N}}\displaystyle \sum\nolimits_{\sigma = 1,2}\left[\lambda_{\rm{D}}\cos({2\pi\beta i})+U_{\rm{D}}\cos^{2}({2\pi\beta i})\right]\hat{c}^{†}_{i,\sigma}\hat{c}_{i,\sigma}$. We find that the quasi-periodic potential can induce the reentrant localization transition and the regime with mobility edges. In the smaller $U_{\rm{D}}$ case, the system exhibits a localization transition. The transition is associated with an intermediate regime with mobility edges. When $U_{\rm{D}}$ goes beyond a critical value $U_{\rm{D}}^{(\rm c)}$, with the increase of $\lambda_{\rm{D}}$, the system undergoes a reentrant localization transition. This indicates that after the first transition, some of the localized eigenstates change back to the extended ones for a range of $\lambda_{\rm{D}}$. For a larger $\lambda_{\rm{D}}$, the system experiences the second localization transition, then all states become localized again. Finally, the local phase diagram of the system is also discussed. This work builds a bridge between the reentrant localization and the superradiance, and it provides a new perspective for the reentrant localization.
      Corresponding author: Xu Zhi-Hao, xuzhihao@sxu.edu.cn ; Guo Li-Ping, guolp@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604188, 12147215, 11904216), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123442), the Open Project of Beijing National Laboratory for Condensed Matter Physics, China, the Scinence and Technology Innovation Project of Higher Education Institutions in Shanxi Province, China (Grant No. 2019L0097), and the Fund for Key Subjects of Shanxi “1331 Project”, China
    [1]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [2]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [3]

    Mekhov I B, Maschler C, Ritsch H 2007 Nat. Phys. 3 319Google Scholar

    [4]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [5]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [6]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [7]

    Klinder J, Keβler H, Bakhtiari M R, Thorwart M, Hemmerich A 2015 Phys. Rev. Lett. 115 230403Google Scholar

    [8]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature 532 476Google Scholar

    [9]

    Zheng W, Cooper N R 2018 Phys. Rev. A 97 021601(RGoogle Scholar

    [10]

    Zhou L, Pu H, Zhang K Y, Zhao X D, Zhang W P 2011 Phys. Rev. A 84 043606Google Scholar

    [11]

    Habibian H, Winter A, Paganelli S, Rieger H, Morigi G 2013 Phys. Rev. Lett. 110 075304Google Scholar

    [12]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [13]

    Aubry S, André G 1980 Ann. Isr.: Phys. Soc. 3 18

    [14]

    Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [15]

    Sarma S D, Kobayashi A, Prange R E 1986 Phys. Rev. Lett. 56 1280Google Scholar

    [16]

    Sarma S D, Song H, Xie X C 1988 Phys. Rev. Lett. 61 2144Google Scholar

    [17]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [18]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [19]

    Lanini Y, Bromberg Y, Christodoulides D N, Silberberg Y 2010 Phys. Rev. Lett. 105 163905Google Scholar

    [20]

    Xu Z H, Xia X, Chen S 2021 arXiv: 2109.02072 v1[cond-mat.dis-nn]

    [21]

    Wang Y C, Xia X, Wang Y J, Zheng Z H, Liu X J 2021 Phys. Rev. B 103 174205Google Scholar

    [22]

    徐志浩, 皇甫宏丽, 张云波 2019 物理学报 68 087201Google Scholar

    Xu Z H, Huangfu H L, Zhang Y B 2019 Acta Phys. Sin. 68 087201Google Scholar

    [23]

    Xu Z H, Xia X, Chen S 2022 Sci. China-Phys. Mech. Astron. 65 227211Google Scholar

    [24]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett 126 106803Google Scholar

    [25]

    Jiang X P, Qiao Y, Cao J P 2021 Chin. Phys. B 30 097202Google Scholar

    [26]

    Padhan A, Giri M K, Mondal S, Mishra T 2021 arXiv: 2109.09621 v1 [cond-mat.quant-gas]

    [27]

    Zhuang W F, Geng B, Lou H G, Guo G C, Gong M 2021 Phys. Rev. A 104 053308Google Scholar

    [28]

    Keeling J, Bhaseen M J, Simons B D 2014 Phys. Rev. Lett 112 143002Google Scholar

    [29]

    Piazza F, Strack P 2014 Phys. Rev. Lett. 112 143003Google Scholar

    [30]

    Chen Y, Yu Z H, Zhai H 2014 Phys. Rev. Lett. 112 143004Google Scholar

    [31]

    Chen Y, Zhai H, Yu Z H 2015 Phys. Rev. A 91 021602(RGoogle Scholar

    [32]

    Chen Y, Yu Z H, Zhai H 2016 Phys. Rev. A 93 041601(RGoogle Scholar

    [33]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [34]

    Xu Z H, Chen S 2021 Phys. Rev. A 103 043325Google Scholar

  • 图 1  实验装置示意图. 在高精度腔中, 中性原子被x-y平面的梯子形光晶格俘获, 并沿着z方向加入驱动泵浦场. 泵浦场的频率为$\omega_{\rm{p}}$远失谐于原子能级跃迁频率$\omega_{\rm{a}}$, 但接近于腔场频率$\omega_{\rm{c}}$

    Figure 1.  A schematic diagram of experimental setup. In a high-finesses optical cavity, spinless atoms are trapped by a ladder lattice in x-y plane. The atoms are driven by a pump laser beam along z direction. The frequency $ \omega_{\rm{p}} $ of the pump laser is far detuned from the atomic transition line $ \omega_{\rm{a}} $ but close to the cavity-mode frequency $ \omega_{\rm{c}} $

    图 2  (a) 腔场耦合强度U取不同的值时, 光场$ |\alpha| $随着耦合强度λ变化的图像; (b) 临界耦合强度$ \lambda_{\rm{c}} $随着U的变化情况. 这里, $ L = 1974 $, $ K = 0.8 $, $ \beta = 610/987 $, $ \varDelta_{{\rm{c}}} = -2 $$ \kappa = 1.2 $

    Figure 2.  (a) The cavity field $ |\alpha| $ as a function of the pumping strength λ for different U; (b) the critical pumping strength $ \lambda_{\rm{c }}$ as a function of U. Here $ L = 1974 $, $ K = 0.8 $, $ \beta = 610/987 $, $ \varDelta_{{\rm{c}}} = -2 $ and $ \kappa = 1.2 $

    图 3  (a) 当$ U_{\rm{D}} = 1, K = 0.8, L = 3194 $时, $ \langle \text{IPR} \rangle $(黑色实线) 和$ \langle \text{NPR} \rangle $(红色虚线) 随$ \lambda_{\rm{D}} $变化的曲线, 灰色区域代表着具有迁移率边的临界区域; (b)$ \lambda_{\rm{D}} = 0.5 $, (c)$ \lambda_{\rm{D}} = 2 $, (d)$ \lambda_{\rm{D}} = 5 $时, $ \langle \text{NPR} \rangle $随着$ L^{-1} $的变化, 其余参数的取值是$ U_{\rm{D}} = 1 $, $ K = 0.8 $

    Figure 3.  (a) $ \langle \text{IPR} \rangle $ (the black solid line) and $ \langle \text{NPR} \rangle $ (the red dashed line) as the functions of $ \lambda_{\rm{D}} $ for $U_{\rm{D}} = 1, K = 0.8, $$ L = 3194$. The grey region denotes the critical region with mobility edges; $ \langle \text{NPR} \rangle $ as a function of $ L^{-1} $ with $ U_{\rm{D}} = 1 $ and $ K = 0.8 $ for (b) $ \lambda_{\rm{D}} = 0.5 $, (c) $ \lambda_{\rm{D}} = 2 $, and (d) $ \lambda_{\rm{D }}= 5 $

    图 4  (a1) $ \lambda_{\rm{D}} = 0.5 $, (b1) $ \lambda_{\rm{D}} = 2 $和(c1) $ \lambda_{\rm{D}} = 5 $时第300个激发态的密度分布; (a2) $ \lambda_{\rm{D }}= 0.5 $, (b2) $ \lambda_{\rm{D}} = 2 $和(c2) $ \lambda_{\rm{D}} = 5 $时第 1100 个激发态的密度分布. 这里, $ K = 0.8 $, $ U_{\rm{D}} = 1 $$ L = 1220 $

    Figure 4.  Density distributions of the 300th excited eigenstates for (a1) $ \lambda_{\rm{D}} = 0.5 $, (b1) $ \lambda_{\rm{D}} = 2 $, and (c1) $ \lambda_{\rm{D}} = 5 $; density distributions of the 1100th excited eigenstates for (a2) $ \lambda_{\rm{D}} = 0.5 $, (b2) $ \lambda_{\rm{D }}= 2 $, and (c2) $ \lambda_{\rm{D}} = 5 $. Here, $ K = 0.8 $, $ U_{\rm{D}} = 1 $, and $ L = 1220 $

    图 5  $ U_{\rm{D}} = 1 $, $ K = 0.8 $$ L = 3194 $时, 分形维度γ随着调制强度$ \lambda_{\rm{D }}$和能量本征值$ E_n $的变化. 其中, 黑色实线和黑色虚线分别对应了两个局域化转变点$ \lambda_{\rm{D}}^{({\rm{c}}1)} $$ \lambda_{\rm{D}}^{({\rm{c}}2)} $. 图中颜色代表着γ的大小

    Figure 5.  γ of the eigenstates as a function of the energy spectrum and $ \lambda_{\rm{D}} $ for $ U_{\rm{D}} = 1 $, $ K = 0.8 $, and $ L = 3194 $. Here the black solid line and black dashed line denote two transport points, $ \lambda_{\rm{D}}^{({\rm{c}}1)} $ and $ \lambda_{\rm{D}}^{({\rm{c}}2)} $. The color code represents the values of γ

    图 6  $ U_{\rm{D}} = 2, K = 0.8, L = 3194 $时 (a)$ \langle \text{IPR} \rangle $(黑色实线)和$ \langle \text{NPR} \rangle $ (红色虚线)随着$ \lambda_{\rm{D}} $变化的曲线, 灰色区域表示具有迁移率边的临界相区; (b)分形维度γ随着能量本征值$ E_n $和调制强度$ \lambda_{\rm{D}} $的变化. 图中颜色代表γ的大小

    Figure 6.  (a) $ \langle \text{IPR} \rangle $ (the black solid line) and $ \langle \text{NPR} \rangle $ (the red dashed line) as the functions of $ \lambda_{\rm{D}} $ for $U_{\rm{D}} = 2,\; K = 0.8, $$ L = 3194$. The grey regions denote the intermediate regimes with mobility edges; (b) fractal dimension γ of all the eigenstates as a function of energies and $ \lambda_{\rm{D}} $ for $U_{\rm{D}} = 2,$ $ K = 0.8 $, and $ L = 3194 $. Here the color code represents the values of γ

    图 7  $ U_{\rm{D}} = 2 $, $ K = 0.8 $时平均参与率$ \langle \text{NPR} \rangle $$ 1/L $变化的曲线  (a) 临界相区; (b) 局域相区

    Figure 7.  $ \langle \text{NPR} \rangle $ as a function of $ 1/L $ for $ U_{\rm{D}} = 2 $, $K = 0.8 $: (a) critical phase region; (b) localized phase region

    图 8  (a) $\lambda_{\rm{D}}\text{-}U_{\rm{D}}$参数平面内, 以序参量η的大小为填充颜色的相图, 其中白色区域表示完全扩展或局域相, 红色区域表示具有迁移率边的临界相. 其中, 绿色方块对应$ \lambda = 3.183 $, $ \varDelta_{{\rm{c}}} = -0.2 $, $ |\alpha| = 0.604 $, $ \lambda_{{\rm{D}}}\approx2.86 $; 黑色圆圈对应的是$ \lambda = 4.113 $, $ \varDelta_{{\rm{c}}} = -0.6 $, $ |\alpha| = 0.607 $, $ \lambda_{{\rm{D}}}\approx4.86 $; 蓝色叉号对应于$ \lambda = 5.069 $, $ \varDelta_{{\rm{c}}} = -2 $, $ |\alpha| = 0.608 $, $ \lambda_{{\rm{D}}}\approx6.08 $. 这里, $ \kappa = 1.2 $, $ U = 6 $, $ U_{\rm{D}}\approx2.21 $. 相图中的(b)绿色方块, (c) 黑色圆圈和(d) 蓝色叉号对应的参数取值下, 所有态的逆参与率随本征能变化的情况. 这里, $ K = 0.8 $$ L = 1974 $

    Figure 8.  (a) Phase diagram in the $\lambda_{\rm{D}}\text{-} U_{\rm{D}}$ plane. The color code represents the values of η, where the white regions denote the full extended or localized phase and the red region represents the critical phase. Here, the green square corresponds to $ \lambda = 3.183 $, $\varDelta_{{\rm{c}}} = -0.2$, $ |\alpha| = 0.604 $, $ \lambda_{{\rm{D}}}\approx2.86 $, the black circle corresponds to $ \lambda = 4.113 $, $ \varDelta_{{\rm{c}}} = -0.6 $, $ |\alpha| = 0.607 $, $ \lambda_{{\rm{D}}}\approx4.86 $, and the blue cross corresponds to $ \lambda = 5.069 $, $ \varDelta_{{\rm{c}}} = -2 $, $ |\alpha| = 0.608 $, $ \lambda_{{\rm{D}}}\approx6.08 $ for $ \kappa = 1.2 $, $ U = 6 $, $ U_{\rm{D}}\approx2.21 $. The IPR of different eigenstates as a function of energies for (b) the green square, (c) the black circle, and (d) the blue cross. Here, $ K = 0.8 $, and $ L = 1974 $

    图 9  (a1)$ K = 0.5 $, (b1)$ K = 1.5 $时, 腔场耦合强度U取不同的值时, 光场$ |\alpha| $随着耦合强度λ变化的图像. 这里, $ L = 1974 $, $ \beta = 610/987 $, $\varDelta_{{\rm{c}}} = -2$$ \kappa = 1.2 $. (a2)$ K = 0.5 $, (b2)$ K = 1.5 $时, $\lambda_{\rm{D}}-U_{\rm{D}}$参数平面内, 以序参量η的大小为填充颜色的相图, 其中白色区域表示完全扩展或局域相, 红色区域表示具有迁移率边的临界相. 这里, $ L = 1974 $

    Figure 9.  The cavity field $ |\alpha| $ as a function of the pumping strength λ for different U for (a1)$ K = 0.5 $, (b1)$ K = 1.5 $. Here $ L = 1974 $, $ \beta = 610/987 $, $\varDelta_{{\rm{c}}} = -2$ and $ \kappa = 1.2 $. Phase diagram in the $\lambda_{\rm{D}}-U_{\rm{D}}$ plane with $ L = 1974 $ for (a2)$ K = 0.5 $, (b2)$ K = 1.5 $. The color code represents the values of η, where the white regions denote the full extended or localized phase and the red region represents the critical phase

  • [1]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [2]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [3]

    Mekhov I B, Maschler C, Ritsch H 2007 Nat. Phys. 3 319Google Scholar

    [4]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [5]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [6]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [7]

    Klinder J, Keβler H, Bakhtiari M R, Thorwart M, Hemmerich A 2015 Phys. Rev. Lett. 115 230403Google Scholar

    [8]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature 532 476Google Scholar

    [9]

    Zheng W, Cooper N R 2018 Phys. Rev. A 97 021601(RGoogle Scholar

    [10]

    Zhou L, Pu H, Zhang K Y, Zhao X D, Zhang W P 2011 Phys. Rev. A 84 043606Google Scholar

    [11]

    Habibian H, Winter A, Paganelli S, Rieger H, Morigi G 2013 Phys. Rev. Lett. 110 075304Google Scholar

    [12]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [13]

    Aubry S, André G 1980 Ann. Isr.: Phys. Soc. 3 18

    [14]

    Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [15]

    Sarma S D, Kobayashi A, Prange R E 1986 Phys. Rev. Lett. 56 1280Google Scholar

    [16]

    Sarma S D, Song H, Xie X C 1988 Phys. Rev. Lett. 61 2144Google Scholar

    [17]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [18]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [19]

    Lanini Y, Bromberg Y, Christodoulides D N, Silberberg Y 2010 Phys. Rev. Lett. 105 163905Google Scholar

    [20]

    Xu Z H, Xia X, Chen S 2021 arXiv: 2109.02072 v1[cond-mat.dis-nn]

    [21]

    Wang Y C, Xia X, Wang Y J, Zheng Z H, Liu X J 2021 Phys. Rev. B 103 174205Google Scholar

    [22]

    徐志浩, 皇甫宏丽, 张云波 2019 物理学报 68 087201Google Scholar

    Xu Z H, Huangfu H L, Zhang Y B 2019 Acta Phys. Sin. 68 087201Google Scholar

    [23]

    Xu Z H, Xia X, Chen S 2022 Sci. China-Phys. Mech. Astron. 65 227211Google Scholar

    [24]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett 126 106803Google Scholar

    [25]

    Jiang X P, Qiao Y, Cao J P 2021 Chin. Phys. B 30 097202Google Scholar

    [26]

    Padhan A, Giri M K, Mondal S, Mishra T 2021 arXiv: 2109.09621 v1 [cond-mat.quant-gas]

    [27]

    Zhuang W F, Geng B, Lou H G, Guo G C, Gong M 2021 Phys. Rev. A 104 053308Google Scholar

    [28]

    Keeling J, Bhaseen M J, Simons B D 2014 Phys. Rev. Lett 112 143002Google Scholar

    [29]

    Piazza F, Strack P 2014 Phys. Rev. Lett. 112 143003Google Scholar

    [30]

    Chen Y, Yu Z H, Zhai H 2014 Phys. Rev. Lett. 112 143004Google Scholar

    [31]

    Chen Y, Zhai H, Yu Z H 2015 Phys. Rev. A 91 021602(RGoogle Scholar

    [32]

    Chen Y, Yu Z H, Zhai H 2016 Phys. Rev. A 93 041601(RGoogle Scholar

    [33]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [34]

    Xu Z H, Chen S 2021 Phys. Rev. A 103 043325Google Scholar

  • [1] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [2] Zhang Jie, Chen Ai-Xi, Peng Ze-An. Spatially oriented correlated emission based on selective drive of diatomic superradiance states. Acta Physica Sinica, 2024, 73(14): 144202. doi: 10.7498/aps.73.20240521
    [3] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [4] Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao. Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices. Acta Physica Sinica, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [5] Lu Zhan-Peng, Xu Zhi-Hao. Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band. Acta Physica Sinica, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [6] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [7] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [8] Shi Ting-Ting, Wang Liu-Jiu, Wang Jing-Kun, Zhang Wei. Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling. Acta Physica Sinica, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [9] Feng Yan-Lin, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Magnetic properties of one-dimensional Fermi gases in an optical cavity. Acta Physica Sinica, 2019, 68(4): 043702. doi: 10.7498/aps.68.20181954
    [10] Xu Zhi-Hao, Huangfu Hong-Li, Zhang Yun-Bo. Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices. Acta Physica Sinica, 2019, 68(8): 087201. doi: 10.7498/aps.68.20182218
    [11] Liu Tong, Gao Xian-Long. Identifying the mobility edges in a one-dimensional incommensurate model with p-wave superfluid. Acta Physica Sinica, 2016, 65(11): 117101. doi: 10.7498/aps.65.117101
    [12] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang. Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators. Acta Physica Sinica, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [13] Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun. Localization of conduction electrons in nanometer metal Dy. Acta Physica Sinica, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [14] Ding Rui, Jin Ya-Qiu, Ogura Hisanao. Stochastic functional analysis of propagation and localization of cylindrical wave in a two-dimensional random medium. Acta Physica Sinica, 2010, 59(6): 3674-3685. doi: 10.7498/aps.59.3674
    [15] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [16] Cao Yong-Jun, Yang Xu, Jiang Zi-Lei. Transmission property of elastic wave through one-dimensional compound materials. Acta Physica Sinica, 2009, 58(11): 7735-7740. doi: 10.7498/aps.58.7735
    [17] Wang Hui-Qin, Liu Zheng-Dong, Wang Bing. The spatial energy distribution and the spectrum characteristics in a two-dimensional random medium. Acta Physica Sinica, 2008, 57(9): 5550-5557. doi: 10.7498/aps.57.5550
    [18] Wang Hui-Qin, Liu Zheng-Dong, Wang Bing. The spatial distribution of optical field in random media with different filling densities of the same material particles. Acta Physica Sinica, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [19] Xu Xing-Sheng, Chen Hong-Da, Zhang Dao-Zhong. Photon localization in amorphous photonic crystal. Acta Physica Sinica, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [20] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
Metrics
  • Abstract views:  4904
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2021
  • Accepted Date:  18 January 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回