Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ high pressure polarized Raman spectroscopy of rhenium disulfide

Zhang Mao-Di Jiao Chen-Yin Wen Ting Li Jing Pei Sheng-Hai Wang Zeng-Hui Xia Juan

Citation:

In-situ high pressure polarized Raman spectroscopy of rhenium disulfide

Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan
PDF
HTML
Get Citation
  • Pressure engineering is known as an efficient, continuous and reversible technique capable of tuning material structure, as well as its electrical, optical, and other physical properties. Raman spectroscopy is used to perform efficient and non-destructive analysis of material structure, and is compatible with the application of external tuning fields. In this work, we combine in-situ pressure engineering and polarized Raman spectroscopy to study the pressure-induced evolution of 18 Raman-active modes in ReS2 crystal. We find that the ReS2 undergoes a structural transformation from 1T' to a distorted-1T' phase at 3.04 GPa, followed by an intralayer deformation of Re4 clusters occurring at 14.24 GPa. Interlayer transitions from disordered to ordered stacking in different in-plane directions are observed at 22.08 GPa and 25.76 GPa when the laser is polarized in different directions, which reflects the pressure-enhanced in-plane anisotropy, i.e. the anisotropy of ReS2 crystal becomes more prominent under high pressure. Our findings demonstrate the effectiveness of pressure in tuning material properties, and shed light on potential applications of ReS2 crystals in anisotropic optical and optoelectronic devices.
      Corresponding author: Wang Zeng-Hui, zenghui.wang@uestc.edu.cn ; Xia Juan, juanxia@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62150052, 62004026), the National Key R&D Program of China (Grant No. 2019YFE0120300), and the Science and Technology Department of Sichuan Province, China (Grant Nos. 2021YJ0517, 21CXTD0088).
    [1]

    Xia J, Wang J, Chao D L, Chen Z, Liu Z, Kuo J L, Yan J X, Shen Z X 2017 Nanoscale 9 7533Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [3]

    刘雨亭, 贺文宇, 刘军伟, 邵启明 2021 物理学报 70 127303Google Scholar

    Liu Y T, He W Y, Liu J W, Sao Q M 2021 Acta Phys. Sin. 70 127303Google Scholar

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [5]

    Zeng H L, Cui X D 2015 Chem. Soc. Rev. 44 2629Google Scholar

    [6]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739Google Scholar

    [7]

    Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M, Wu J Q 2014 Nat. Commun. 5 3252Google Scholar

    [8]

    Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667Google Scholar

    [9]

    Lorchat E, Froehlicher G, Berciaud S 2016 ACS Nano 10 2752Google Scholar

    [10]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [11]

    Zhong H X, Gao S Y, Shi J J, Yang L 2015 Phys. Rev. B 92 115438Google Scholar

    [12]

    徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫 2021 物理学报 70 098203Google Scholar

    Xu X, Zhang Y, Yan Q, Liu J J, Wang J, Xu X L, Hua D X 2021 Acta Phys. Sin. 70 098203Google Scholar

    [13]

    He J Q, Zhang L, He D W, Wang Y S, He Z Y, Zhao H 2018 Opt. Express 26 21501Google Scholar

    [14]

    Hart L, Dale S, Hoye S, Webb J L, Wolverson D 2016 Nano Lett. 16 1381Google Scholar

    [15]

    Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J, Park J H 2016 Adv. Mater. 28 6985Google Scholar

    [16]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [17]

    Jin W C, Yeh P C, Zaki N, Zhang D T, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood Jr R M 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [18]

    Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar

    [19]

    Ho C H, Huang Y S, Tiong K K 2001 J. Alloy. Compd. 317 222

    [20]

    Xia J, Li D F, Zhou J D, Yu P, Lin J H, Kuo J L, Li H B, Liu Z, Yan J X, Shen Z X 2017 Small 13 1701887Google Scholar

    [21]

    Calandra M, Mauri F 2011 Phys. Rev. Lett. 106 196406Google Scholar

    [22]

    Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312Google Scholar

    [23]

    Xia J, Yan J X, Wang Z H, He Y M, Gong Y J, Chen W Q, Sum T C, Liu Z, Ajayan P M, Shen Z X 2021 Nat. Phys. 17 92Google Scholar

    [24]

    Alidoust M, Halterman K, Zyuzin A A 2017 Phys. Rev. B 95 155124Google Scholar

    [25]

    Hou D B, Ma Y Z, Du J G, Yan J Y, Ji C, Zhu H Y 2010 J. Phys. Chem. Solids 71 1571Google Scholar

    [26]

    Zhou D W, Zhou Y H, Pu C Y, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z R, Xing D Y 2017 npj Quantum Mater. 2 19Google Scholar

    [27]

    Kertesz M, Hoffmann R 1984 J. Am. Chem. Soc. 106 3453Google Scholar

    [28]

    Murray H H, Kelty S P, Chianelli R R, Day C S 1994 Inorg. Chem. 33 4418Google Scholar

    [29]

    Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154Google Scholar

    [30]

    Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G, Xing D Y 2015 Phys. Rev. B 92 054110Google Scholar

    [31]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar

    [32]

    Sheremetyeva N, Tristant D, Yoshimura A, Gray J, Liang L B, Meunier V 2019 Phys. Rev. B 100 214101Google Scholar

    [33]

    Saha P, Ghosh B, Mazumder A, Glazyrin K, Mukherjee G D 2020 J. Appl. Phys. 128 085904Google Scholar

    [34]

    Ibáñez-Insa J, Wózniak T, Oliva R, Popescu C, Hernández S, López-Vidrier J 2021 Minerals 11 207

    [35]

    Yan Y L, Jin C L, Wang J, Qin T R, Li F F, Wang K, Han Y H, Gao C X 2017 J. Phys. Chem. Lett. 8 3648Google Scholar

    [36]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [37]

    Zhao Q Y, Guo Y H, Zhou Y X, Xu X, Ren Z Y, Bai J T, Xu X L 2017 J. Phys. Chem. C 121 23744Google Scholar

    [38]

    Feng Y Q, Sun H Y, Sun J H, Shen Y, You Y 2019 Mater. Today Commun. 21 100684Google Scholar

    [39]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, Yang Z R 2014 Phys. Rev. Lett. 120 037002

    [40]

    Mao H K, Chen B, Chen J H, Li K, Lin J F, Yang W G, Zheng H Y 2016 Matter Radiat. Extrem. 1 59Google Scholar

  • 图 1  (a) 原位高压偏振拉曼光谱系统测试图; (b) ReS2薄片的光学照片, 绿色箭头为入射激光的两个正交偏振方向; (c) 封装样品后的金刚石对顶砧示意图; (d) ReS2晶体结构俯视图, 黑色矩形示意为结构中的铼链, θ为入射激光偏振方向与ReS2晶体b轴的夹角, $\otimes $为激光与原子面垂直的入射方向; (e) ReS2晶体结构侧视图

    Figure 1.  (a) Schematic illustration of the in-situ high pressure polarized Raman measurement system; (b) optical image of the ReS2 flake being measured (The green arrows indicate the polarization directions of the incident laser); (c) illustration of a diamond anvil cell (DAC) loaded with the ReS2 sample; (d) top view of the ReS2 crystal structure (The black rectangle indicates the Re-Re chain. θ is defined as the angle between the polarization of the incident laser and the b-axis of ReS2. $\otimes $ represents the incident direction of the laser (into the page)); (e) side view of the ReS2 crystal structure.

    图 2  两种正交入射激光偏振方向下ReS2的拉曼光谱, 入射激光波长为532 nm; α为入射激光偏振方向(白色箭头)相对于实验台坐标轴x (白色虚线)的夹角, 蓝色为α = 0°, 红色为α = 90°

    Figure 2.  Raman spectra of an ReS2 flake with the incident laser polarized parallel (top, α = 0°) and perpendicular (bottom, α = 90°) to the x-axis of the experimental system. The wavelength of excitation laser is 532 nm. α is defined as the angle of the incident laser polarization direction (white arrow) with respect to the x-axis (white dotted line).

    图 3  ReS2晶体的原位高压拉曼光谱(0—30 GPa) (a) α = 0°; (b) α = 90°. *区域为硅油的拉曼信号; 深蓝色、绿色和橙色虚线分别代表第一个相变点、第二个相变点以及第三个相变点时特征拉曼振动模式的变化趋势

    Figure 3.  In-situ high pressure Raman measurements of ReS2 crystal (0–30 GPa): (a) α = 0°; (b) α = 90°. The bump labeled with * is the Raman signal from silicone oil. The dark blue, green, and orange dotted lines represent the evolution of the key Raman modes revealing the first, second, and third phase transitions, respectively.

    图 4  ReS2晶体的部分拉曼振动模式频率随压强的变化 (0—30 GPa) (a) α = 0°; (b) α = 90°. 深蓝色, 绿色和橙色数据线分别代表第一个相变点, 第二个相变点以及第三个相变点时特征拉曼振动模式的变化趋势; 灰色数据线表示文中不进行重点讨论的拉曼振动模式

    Figure 4.  Pressure dependence of Raman mode frequencies for the ReS2 sample (0–30 GPa): (a) α = 0°; (b) α = 90. The dark blue, green, and orange data lines represent the variation trend of featured Raman modes at the first, second, and third phase transitions, respectively. The gray data lines represent Raman modes that can be observed throughout the entire pressure range.

    表 1  ReS2晶体的18个拉曼振动模式的属性

    Table 1.  Assignment of 18 Raman active modes in ReS2 crystal.

    Serial numberSymmetryRaman frequency/cm–1
    1Ag-like137.5
    2Ag-like142.6
    3Eg-like150.2
    4Eg-like160.4
    5Eg-like211.0
    6Eg-like233.8
    7Cp274.6
    8Cp280.9
    9Eg-like305.0
    10Eg-like307.8
    11Cp317.4
    12Cp321.7
    13Cp345.6
    14Cp365.9
    15Cp375.4
    16Cp404.5
    17Ag-like426.4
    18Ag-like436.1
    DownLoad: CSV
  • [1]

    Xia J, Wang J, Chao D L, Chen Z, Liu Z, Kuo J L, Yan J X, Shen Z X 2017 Nanoscale 9 7533Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [3]

    刘雨亭, 贺文宇, 刘军伟, 邵启明 2021 物理学报 70 127303Google Scholar

    Liu Y T, He W Y, Liu J W, Sao Q M 2021 Acta Phys. Sin. 70 127303Google Scholar

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [5]

    Zeng H L, Cui X D 2015 Chem. Soc. Rev. 44 2629Google Scholar

    [6]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739Google Scholar

    [7]

    Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M, Wu J Q 2014 Nat. Commun. 5 3252Google Scholar

    [8]

    Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667Google Scholar

    [9]

    Lorchat E, Froehlicher G, Berciaud S 2016 ACS Nano 10 2752Google Scholar

    [10]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [11]

    Zhong H X, Gao S Y, Shi J J, Yang L 2015 Phys. Rev. B 92 115438Google Scholar

    [12]

    徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫 2021 物理学报 70 098203Google Scholar

    Xu X, Zhang Y, Yan Q, Liu J J, Wang J, Xu X L, Hua D X 2021 Acta Phys. Sin. 70 098203Google Scholar

    [13]

    He J Q, Zhang L, He D W, Wang Y S, He Z Y, Zhao H 2018 Opt. Express 26 21501Google Scholar

    [14]

    Hart L, Dale S, Hoye S, Webb J L, Wolverson D 2016 Nano Lett. 16 1381Google Scholar

    [15]

    Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J, Park J H 2016 Adv. Mater. 28 6985Google Scholar

    [16]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [17]

    Jin W C, Yeh P C, Zaki N, Zhang D T, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood Jr R M 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [18]

    Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar

    [19]

    Ho C H, Huang Y S, Tiong K K 2001 J. Alloy. Compd. 317 222

    [20]

    Xia J, Li D F, Zhou J D, Yu P, Lin J H, Kuo J L, Li H B, Liu Z, Yan J X, Shen Z X 2017 Small 13 1701887Google Scholar

    [21]

    Calandra M, Mauri F 2011 Phys. Rev. Lett. 106 196406Google Scholar

    [22]

    Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312Google Scholar

    [23]

    Xia J, Yan J X, Wang Z H, He Y M, Gong Y J, Chen W Q, Sum T C, Liu Z, Ajayan P M, Shen Z X 2021 Nat. Phys. 17 92Google Scholar

    [24]

    Alidoust M, Halterman K, Zyuzin A A 2017 Phys. Rev. B 95 155124Google Scholar

    [25]

    Hou D B, Ma Y Z, Du J G, Yan J Y, Ji C, Zhu H Y 2010 J. Phys. Chem. Solids 71 1571Google Scholar

    [26]

    Zhou D W, Zhou Y H, Pu C Y, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z R, Xing D Y 2017 npj Quantum Mater. 2 19Google Scholar

    [27]

    Kertesz M, Hoffmann R 1984 J. Am. Chem. Soc. 106 3453Google Scholar

    [28]

    Murray H H, Kelty S P, Chianelli R R, Day C S 1994 Inorg. Chem. 33 4418Google Scholar

    [29]

    Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154Google Scholar

    [30]

    Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G, Xing D Y 2015 Phys. Rev. B 92 054110Google Scholar

    [31]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202Google Scholar

    [32]

    Sheremetyeva N, Tristant D, Yoshimura A, Gray J, Liang L B, Meunier V 2019 Phys. Rev. B 100 214101Google Scholar

    [33]

    Saha P, Ghosh B, Mazumder A, Glazyrin K, Mukherjee G D 2020 J. Appl. Phys. 128 085904Google Scholar

    [34]

    Ibáñez-Insa J, Wózniak T, Oliva R, Popescu C, Hernández S, López-Vidrier J 2021 Minerals 11 207

    [35]

    Yan Y L, Jin C L, Wang J, Qin T R, Li F F, Wang K, Han Y H, Gao C X 2017 J. Phys. Chem. Lett. 8 3648Google Scholar

    [36]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [37]

    Zhao Q Y, Guo Y H, Zhou Y X, Xu X, Ren Z Y, Bai J T, Xu X L 2017 J. Phys. Chem. C 121 23744Google Scholar

    [38]

    Feng Y Q, Sun H Y, Sun J H, Shen Y, You Y 2019 Mater. Today Commun. 21 100684Google Scholar

    [39]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, Yang Z R 2014 Phys. Rev. Lett. 120 037002

    [40]

    Mao H K, Chen B, Chen J H, Li K, Lin J F, Yang W G, Zheng H Y 2016 Matter Radiat. Extrem. 1 59Google Scholar

  • [1] Zhang Xue-Yang, Hu Wang-Yu, Dai Xiong-Ying. Influence of iron anisotropy on phase transition near grain boundary under shock. Acta Physica Sinica, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [5] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] Sun Jian-Ping, Prashant Shahi, Zhou Hua-Xue, Ni Shun-Li, Wang Shao-Hua, Lei He-Chang, Wang Bo-Sen, Dong Xiao-Li, Zhao Zhong-Xian, Cheng Jin-Guang. Effect of high pressure on intercalated FeSe high-Tc superconductors. Acta Physica Sinica, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [7] Cheng Jin-Guang. Pressure-tuned magnetic quantum critical point and unconventional superconductivity. Acta Physica Sinica, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [8] Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin. Sound velocity and phase transition for low porosity tin at high pressure. Acta Physica Sinica, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [9] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Meng Chuan-Min, Xu Liang, Li Xu-Hai. Structural phase transition of Ru at high pressure and temperature. Acta Physica Sinica, 2013, 62(17): 176402. doi: 10.7498/aps.62.176402
    [10] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [12] Yuan Huan-Li, Yuan Bao-He, Li Fang, Liang Er-Jun. Phase transition and thermal expansion properties of ZrV2-xPxO7. Acta Physica Sinica, 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
    [13] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] Zhou Mi, Zhang Peng, Liu Tie-Cheng, Xu Da-Peng, Jiang Yong-Heng, Gao Shu-Qin, Li Zuo-Wei. Effect of pressure on the Fermi resonance of benzene. Acta Physica Sinica, 2010, 59(1): 210-214. doi: 10.7498/aps.59.210
    [15] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [16] Cai Li, Han Xiao-Yun, Wen Xi-Sen. The elastic wave propagation in two-dimensional phononic crystal at low frequencies and the anisotropy of effective velocity. Acta Physica Sinica, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [17] Wang Hui, Liu Jin-Fang, He Yan, Chen Wei, Wang Ying, Gerward L., Jiang Jian-Zhong. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge. Acta Physica Sinica, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [18] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [19] Zhuang Fei, Xiao San-Shui, Shang Lian-Ju, He Sai-Ling. . Acta Physica Sinica, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] . Acta Physica Sinica, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
Metrics
  • Abstract views:  6120
  • PDF Downloads:  141
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2022
  • Accepted Date:  17 March 2022
  • Available Online:  13 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回