Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter

Wang Kai-Nan Xu Han Zhou Yin Xu Yun-Peng Song Wei Tang Hong-Zhi Wang Qiao-Wei Zhu Dong Weng Kan-Xing Wang He-Lin Peng Shu-Ping Wang Xiao-Long Cheng Bing Li De-Zhao Qiao Zhong-Kun Wu Bin Lin Qiang

Citation:

Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter

Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang
PDF
HTML
Get Citation
  • The information about Earth’s gravity field is an important basic information necessarily for geodesy, geophysics, geodynamics and other disciplines. The mapping of gravity field is an effective mean to obtain the gravity field information. Compared with the surveying of gravity field based on satellite, ship, and airplane, vehicle-mounted gravity mapping has advantages of strong flexibility, high spatial resolution and high accuracy. A short baseline or a small-scale gravity field mapping can be realized based on the combination of relative gravimeters and the high-precision absolute gravity reference point. However, this method is not suitable for the situation of a long baseline or a large-scale gravity field surveying due to the drift of relative gravimeter. In this work, a vehicle-mounted system for rapid surveying of the absolute gravity field is built up based on a miniaturized atomic gravimeter. The inner precision of the instrument is evaluated to be 0.123 mGal, and the outer precision is 0.112 mGal in a field test which contains 12 points for 3 km distance. Furthermore, with this system, the absolute gravity data are obatined within 2 min for adjusting and 5 min for measuring in downtown for each measured point. A rapid surveying of absolute gravity field for 19 points is carried out and the route covers 24 km. The inner precision of the instrument is evaluated to be 0.162 mGal, and the outer precision is 0.169 mGal. Finally, the free-air gravity anomalies obtained from the measured data of atomic gravimeter and the fitting results of satellite gravity model are analyzed, and it is found that the trends of changing are basically consistent with each other. This paper provides a new proposal for the rapid surveying of the absolute gravity field.
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334), the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program (Grant No. DD20189831), and the Experiments for Space Exploration Program and the Qian Xuesen Laboratory, China Academy of Space Technology (Grant No. TKTSPY-2020-06-01)
    [1]

    Van Camp M, De Viron O, Watlet A, Meurers B, Francis O, Caudron C 2017 Rev. Geophys. 55 938Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [3]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [4]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [5]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [6]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [7]

    Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [9]

    Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49Google Scholar

    [10]

    Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V, Peters A 2011 Gyroscopy Navig. 2 170Google Scholar

    [11]

    Bodart Q, Merlet S, Malossi N, Dos Santos F P, Bouyer P, Landragin A 2010 Appl. Phys. Lett. 96 134101Google Scholar

    [12]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [13]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [14]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [15]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [16]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [17]

    Heine N, Matthias J, Sahelgozin M, Herr W, Abend S, Timmen L, Müller J, Rasel E M 2020 Eur. Phys. J. D 74 174Google Scholar

    [18]

    Chen B, Long J, Xie H, Li C, Chen L, Jiang B, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [19]

    Zhu D, Zhou Y, Wu B, Weng K X, Wang K N, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [20]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [21]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [24]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [25]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [26]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [27]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [28]

    Guo J, Ma S, Zhou C, Liu J, Wang B, Pan D, Mao H 2021 Preprints 202111.0255.v1

    [29]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

  • 图 1  车载绝对重力场快速测绘系统示意图

    Figure 1.  Schematic diagram of the vehicle-mounted system for rapid surveying of the absolute gravity field.

    图 2  外场环境下的振动噪声功率谱密度

    Figure 2.  Power spectral density of the vibration noise in the field.

    图 3  车载静态环境下的长扫重力测量结果(单点5 min平均)

    Figure 3.  Long-term measured results of gravity on a static truck (each point takes average of 5 minutes).

    图 4  车载静态情况下的重力测量灵敏度评估

    Figure 4.  Evaluation of sensitivity with the measured gravity data when the truck is stationary.

    图 5  杭州市宝寿山测线以及测点分布图, 蓝色实线为测线, 红点表示各测点分布

    Figure 5.  Measurement route and the distribution of measured points on Baoshou Mountain in the city of Hangzhou. The blue curve depicts the measurement route and the red points are the measurement locations.

    图 6  杭州宝寿山原子重力仪两次测绘的结果及其残差

    Figure 6.  Surveyed results of absolute gravity of two repeated measured line and the corresponding residuals obtained by the atomic gravimeter on Baoshou Mountain in the city of Hangzhou.

    图 7  在杭州宝寿山由原子重力仪与CG-5相对重力仪测绘的数据及两者的残差数据. 图中黑点为原子重力仪两次测绘结果的平均值, 红点为相对重力仪两次测绘结果的平均值

    Figure 7.  Gravity data surveyed by atomic gravimeter and relative gravimeter of CG-5 on Baoshou Mountain in Hangzhou city and the residuals data between them. The black dots and red dots are the average values of measured gravity data of two repeated lines with atomic gravimeter and relative gravimeter CG-5, respectively.

    图 8  长沙黄兴大道测线及测点分布图, 其中蓝色实线是规划的测线, 红色标记点是各测点位置

    Figure 8.  Measurement route and the distribution of measured points on Huangxing Avenue of Changsha city. The blue curve depicts the measurement route and the red marked points are the measurement locations.

    图 9  高振动噪声环境下原子重力仪在同一测线两次重力测绘的数据及其残差数据

    Figure 9.  Surveyed gravity data of the same line for twice measurements with atomic gravimeter in the environment of high vibration noise and the residuals data.

    图 10  高振动噪声环境下由原子重力仪与相对重力仪CG-5测绘的数据及两者的残差数据, 图中黑点为原子重力仪两次测绘结果的平均值, 红点为相对重力仪三次测绘结果的平均值

    Figure 10.  Gravity data surveyed by atomic gravimeter and relative gravimeter of CG-5 in the environment of high vibration noise and the residuals data between them. The black dots and red dots are the average values of measured gravity data of two repeated lines with atomic gravimeter and three repeated lines with relative gravimeter CG-5, respectively.

    图 11  长沙黄兴大道测区高程剖面图(红色倒三角为测点)

    Figure 11.  Elevation profile of measurement locations on Huangxing Avenue of Changsha city (the red inverted triangles are the measured points).

    图 12  由EGM2008模型拟合获取重力异常分布图

    Figure 12.  Distribution map of the gravity anomaly obtained by fitting of the EGM2008 model.

    图 13  实测与模型计算的自由空间重力异常数据及其残差, 图中红色点为由卫星重力模型拟合获取的测点自由空间重力异常, 黑色点为原子重力仪测量值改正后的测点自由空间重力异常

    Figure 13.  Free-air gravity anomalies obtained by the measured data with atomic gravimeter and the fitting of gravity model and the residual date between them. The black and red dots are the results acquired by atomic gravimeter and the theoretical model, respectively.

    表 1  车载快速绝对重力测量系统B类不确定度表

    Table 1.  Class B uncertainty table for vehicle-mounted rapid absolute gravimetry system

    项目修正量/μGal不确定度/μGal
    科里奥利力效应39.003.06
    双光子频移–13.232.52
    激光波长–5.501.10
    参考频率0.001.00
    射频相移–131.4710.81
    自引力效应–2.700.10
    残余边带–241.56103.00
    其他修正量0.172.00
    合成结果–355.29103.61
    DownLoad: CSV
  • [1]

    Van Camp M, De Viron O, Watlet A, Meurers B, Francis O, Caudron C 2017 Rev. Geophys. 55 938Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [3]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [4]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [5]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [6]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [7]

    Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [8]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [9]

    Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49Google Scholar

    [10]

    Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V, Peters A 2011 Gyroscopy Navig. 2 170Google Scholar

    [11]

    Bodart Q, Merlet S, Malossi N, Dos Santos F P, Bouyer P, Landragin A 2010 Appl. Phys. Lett. 96 134101Google Scholar

    [12]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [13]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [14]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [15]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [16]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [17]

    Heine N, Matthias J, Sahelgozin M, Herr W, Abend S, Timmen L, Müller J, Rasel E M 2020 Eur. Phys. J. D 74 174Google Scholar

    [18]

    Chen B, Long J, Xie H, Li C, Chen L, Jiang B, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [19]

    Zhu D, Zhou Y, Wu B, Weng K X, Wang K N, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [20]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [21]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [24]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [25]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [26]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [27]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [28]

    Guo J, Ma S, Zhou C, Liu J, Wang B, Pan D, Mao H 2021 Preprints 202111.0255.v1

    [29]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

  • [1] Ye Liu-Xian, Xu Yun-Peng, Wang Qiao-Wei, Cheng Bing, Wu Bin, Wang He-Lin, Lin Qiang. Optimization and control of cold atom interference phase shift based on laser double-sideband suppression. Acta Physica Sinica, 2023, 72(2): 024204. doi: 10.7498/aps.72.20221711
    [2] Wen Yi, Wu Kang, Wang Li-Jun. Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. A coefficient searching based vibration correction method. Acta Physica Sinica, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [4] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [6] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [7] Analysis of vibration correction performance of vibration sensor for absolute gravity measurement. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211686
    [8] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. Effect of vibration noise with fixed phase on absolute gravimetry applying vibration isolator. Acta Physica Sinica, 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [9] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [10] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [11] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [12] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [13] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [14] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [15] Huang Xin-Yao, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi, Gong Qi-Huang. Planar quantum squeezing and atom interferometry. Acta Physica Sinica, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [16] Hu Hua, Wu Kang, Shen Lei, Li Gang, Wang Li-Jun. A new high precision absolute gravimeter. Acta Physica Sinica, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [17] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] XU XIN-YE, WANG YU-ZHU. THEORETICAL ANALYSES OF A DOPPLER TYPE ATOMIC INTERFEROMETER. Acta Physica Sinica, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
Metrics
  • Abstract views:  4638
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2022
  • Accepted Date:  27 March 2022
  • Available Online:  21 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回