Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band

Chen Qi Dai Yue Li Fei-Yan Zhang Biao Li Hao-Chen Tan Jing-Rou Wang Xiao-Han He Guang-Long Fei Yue Wang Hao Zhang La-Bao Kang Lin Chen Jian Wu Pei-Heng

Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Phys. Sin., 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
Citation: Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Phys. Sin., 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594

Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band

Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-performance mid-wave and long-wave infrared single-photon detectors not only have significant research value in the fields of infrared astronomy and defense technology, but also are the challenges in the field of single-photon detection technology. Superconducting nanowire single-photon detectors (SNSPDs) have shown excellent performances in the near-infrared band. However, how to further improve the cutoff wavelength λc is a topic of widespread concern. In this paper, the method of improving λc by regulating the superconducting disorder is discussed, and a detector with an operating wavelength band of 5–10 μm is designed and fabricated.The studies show that the multiplication and diffusion behaviors of the quasiparticles always occur during the photon detection events, although the microscopic photodetection mechanism of SNSPD still lacks a perfect theoretical explanation. Therefore, the theoretical analysis mainly considers the influence of the quasiparticles in this paper, and the mathematical formula of the detection cutoff wavelength λc can be obtained based on the phenomenological quasiparticle diffusion model. Furthermore, the disorder-dependent superconducting phase transition temperature Tc, superconducting energy gap Δ, and electron thermalization time τth are also considered, in order to obtain more precise results.Theoretical analysis suggests that the increase in the sheet resistance Rs, which evaluates the disorder strength, will help to increase λc. For example, when the nanowire width is kept at 30 nm and Rs > 380 Ω/square, it can be deduced that λc is larger than 10 μm.Experimentally, the active area of the device consists of a straight superconducting nanowire with a length of 10 μm and a width of 30 nm, so that it can effectively reduce the probability of the defects on the nanowire and avoid the current crowding effect. We fabricate a 30 nm-wide Mo0.8Si0.2 mid infrared SNSPD, which has a cutoff wavelength λc no more than 5 μm, the effective strength of the disorder-the film sheet resistance Rs = 248.6 Ω/square. For comparison, the sheet resistance, which is controlled by the film thickness, increases to about 320 Ω/square in this experiment.It is demonstrated that the Mo0.8Si0.2 detector with Rs 320 Ω/square can achieve saturated quantum efficiency at a wavelength of 6 μm. Furthermore, 53% quantum efficiency at a wavelength of 10.2 μm can be obtained when the detector works at a bias current of 0.9ISW (ISW is the superconducting transition current), and it can theoretically reach a maximum value of 92% if the compression of switching current is excluded. Therefore, it can be predicted that the disorder regulation may become another efficient approach to designing high-performance mid-wave and long-wave infrared SNSPDs, in addition to the optimization of the superconducting energy gap and the cross section of superconducting nanowire.However, the continuous increase in the disorder will cause both the superconducting phase transition temperature Tc and ISW of the detector to decrease from the viewpoint of detector fabrication and application. This downward trend is especially pronounced when the nanowire width is ultranarrow, which is not conducive to the signal readout of the detector. Thus, exploring the optimal disorder regulation technology and balancing the relationship among the operating temperature, the signal-to-noise ratio, and the cutoff wavelength will have key scientific and application value for the development of high-performance mid-wave and long-wave infrared SNSPDs.
      PACS:
      85.25.-j(Superconducting devices)
      81.07.-b(Nanoscale materials and structures: fabrication and characterization)
      95.55.Aq(Charge-coupled devices, image detectors, and IR detector arrays)
      85.40.Ls(Metallization, contacts, interconnects; device isolation)
      Corresponding author: Zhang La-Bao, Lzhang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033002, 62101240, 62071218, 62071214, 61801206, 11227904), the National Key R&D Program of China (Grant No. 2017YFA0304002), the Research and Development Program for Key Areas in Guangdong Province, China (Grant No. 2020B030302001), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK202010177).

    作为诸多现代化高科技装备的眼睛, 先进红外探测器受到了越来越广泛的关注. 在极限灵敏探测领域, 超导纳米线单光子探测器(superconducting nanowire single-photon detector, SNSPD)已在近红外波段展现了极好的工作性能, 如系统探测效率大于98%[1,2]以及时间分辨率小于3 ps[3]等. 理论研究表明, SNSPD的工作波长可进一步覆盖中长波红外光谱, 实现高性能中长波红外SNSPD的研制对许多前沿科学技术领域具有重要的应用价值: 喷气推进实验室(JPL)与国家标准与技术研究所(NIST)研究表明采用高性能的中红外SNSPD可有效提高未来“起源号”太空望远镜上装载的系外行星传输光谱仪的工作稳定性[4]; Chen等[5]基于高时间精度和高光谱分辨率SNSPD的中红外光谱仪系统揭示了分子科学领域的新规律; 美国国防高级研究计划局(DARPA)在其“Invisible Headlights”项目中已联合麻省理工学院将打造一款基于中长波红外SNSPD的全新无源3D视觉传感器, 来提高其军事装备的隐蔽性[6]. 然而, 随着探测波长的增大, 常规SNSPD的量子效率ηi呈指数形式下降[7], 如何有效提高SNSPD在中长波红外波段上的ηi, 成为了其发展方向上的一个关键性难点.

    探测截止波长λc是表征SNSPD量子效率ηi能够达到饱和的最长波长[8]. 当前研究表明, 纳米线的超导能隙Δ和截面尺寸是影响SNSPD探测截止波长λc的两大因素. 一方面, 减小Δ可以使相同能量的单光子在超导纳米线上破坏更多的库珀对. 目前用于研制中红外SNSPD的低能隙超导材料主要有WSi[9]和MoSi[10]. 另一方面, 根据二流体模型, 减小纳米线宽w可以使纳米线截面区域库珀对的总量减小, 从而导致光吸收区域的超导序参量被大幅度抑制. 前期研究中, 我们将Mo0.8Si0.2超导纳米线的宽度减小到30 nm, 在1.55—5.07 μm宽谱上获得了近乎饱和的量子效率[10].

    在以上两种技术途径之外, 本文研究发现超导薄膜的无序特性也是影响SNSPD探测截止波长λc的一大因素. 超导体的无序特性实际上描述了库珀对的局域化行为[11]. 一方面, 当产生强无序现象时, 库珀对之间的长程相干特性被破坏, 使超导序参量离散化, 超导体内部将变成一个个孤立的超导岛, 最终导致超导-绝缘相变的发生[12,13]. 但另一方面, 当无序的强度保持在一定程度内时, 孤立的超导岛并不会产生, 因此不会引起超导-绝缘相变. 在此范围内, 随着无序的增强, 库珀对之间的库仑斥力增大, 相互吸引力减小, 使得破坏库珀对形成准粒子所需要的能量减小. 此外, 无序增强也会使得超导体的常温电阻率(或方块电阻Rs)增大. 由Einstein-Smoluchowski关系可知, 超导体费米面上的电子态密度减小, 最终导致相应的库珀对密度降低[14]. 从超导单光子探测的角度来看, 超导薄膜无序特性的增强将导致光子激发产生的准粒子云的有效温度更高, 从而增大诱导纳米线发生超导相变的概率.

    由此, 在新的技术途径中, 可以考虑通过对超导薄膜无序特性的有效调控来达到增大SNSPD探测截止波长λc和量子效率ηi的目的. 超导薄膜的方块电阻Rs是衡量其无序强度的一个主要评价因子, 一般认为无序越强则Rs越大[15]. 因此, 本文分析了在具有不同结构尺寸的SNSPD中, Rs的大小对λc的影响. 理论分析表明, 在不同的线宽条件下, Rs增大将同步增大λc, 这一理论预测在实验中也得到了论证. 本文通过增大Mo0.8Si0.2薄膜的Rs进一步将相应SNSPD的λc从低于5 μm提高到了6 μm, 同时在10.2 μm波长上测得量子效率ηi达到53%.

    尽管SNSPD的光探测微观机制仍缺乏完善的理论解释, 但研究表明整个光响应过程常伴随着准粒子的倍增和扩散运动. 因此, 本文在理论分析中主要考虑准粒子的影响, 基于唯象准粒子扩散模型可以得到SNSPD的探测截止波长λc的计算表达式[16]

    λc=K4hce2Rs3πΔ2wDτth1(1IB/Idep)
    (1)

    其中, K为光子在纳米线上的能量利用率(即用以有效破坏库珀对并激发产生准粒子的能量占总光子能量的比例), h为普朗克常数, c为真空中的光速, e为单位电荷量, Rs为超导薄膜的方块电阻, Δ为纳米线的超导能隙, w为纳米线的宽度, D为超导薄膜的电子扩散系数, τth为电子热化时间, IB为探测器的偏置电流, Idep为探测器的破对电流(IB理论上可以达到的最大值). 为充分说明无序对λc的影响, 本文将建立不同结构尺寸下λcRs的定量数学关系: λc = f (Rs, w).

    在(1)式中, 由于超导能隙Δ同样受到Rsw的影响, 因此在表征λc, Rs以及w三者间关系之前, 需要解析三者之间的联系. 首先, 有研究表明Δ与探测器工作温度T以及纳米线超导相变温度Tc之间存在以下关系[17]:

    Δ(t)=Δ(0)tanh{1.82[1.018(1t1)]0.51}.
    (2)

    根据BCS理论有Δ(0) = 1.764kBTc, kB为玻尔兹曼常数, t为归一化温度因子, 有t = T/Tc. 这里假设探测器工作在0.3 K的温度下, 即T = 0.3 K. 通过分析无序与薄膜超导电性的关系, Ivry等[18]得到了薄膜的超导相变温度Tc0、薄膜厚度d以及薄膜方块电阻Rs之间的数学关系:

    dTc0=ARBs
    (3)

    式中, AB均为常数拟合因子. 以Mo0.8Si0.2超导薄膜为例, 根据Li等[19]的研究结果可得AB拟合因子分别为63752和1.42.

    结合Simonin模型关于Tc0d之间关系的描述, 有Tc0 = Tbulkc(1 – dmin/d), 其中Tbulkc为体材料超导体的超导相变温度; dmin作为常数拟合因子, 表示超导薄膜的最小厚度[20]. Mo0.8Si0.2薄膜超导相变温度Tc0与薄膜厚度间的关系如图1所示, 采用Simonin模型进行拟合可得到Tbulkcdmin分别为7.8 K和2.4 nm. 此外, 当超导薄膜制备成纳米线时, 超导邻近效应的存在将导致纳米线的超导相变温度Tc低于Tc0. 根据前期的研究成果, 可得具有不同宽度w的超导纳米线的TcTc0存在以下关系[21]:

    图 1 Mo0.8Si0.2薄膜的超导相变温度Tc0与厚度倒数1/d的关系, 红色直线为Simonin模型的拟合结果\r\nFig. 1. Relationship between the superconducting phase transition critical temperature Tc0 and the reciprocal of the thickness 1/d of the Mo0.8Si0.2 thin film. The red curve shows the fitting results of the Simonin model.
    图 1  Mo0.8Si0.2薄膜的超导相变温度Tc0与厚度倒数1/d的关系, 红色直线为Simonin模型的拟合结果
    Fig. 1.  Relationship between the superconducting phase transition critical temperature Tc0 and the reciprocal of the thickness 1/d of the Mo0.8Si0.2 thin film. The red curve shows the fitting results of the Simonin model.
    TcTc0=112[πξ(0)wwn]2
    (4)

    式中, ξ(0)为薄膜在0 K下的超导相干长度, wn表示纳米线两侧由无序等因素造成的正常态区域总宽度. 对于Mo0.8Si0.2超导薄膜而言, ξ(0) = 4.5 nm, wn = 6.0 nm. 最终结合(3)式和(4)式可得到Rs与纳米线宽w对超导纳米线的Tc的影响:

    Tc=(ATbulkcA+TbulkcdminRBs)[112(πξ(0)wwn)2].
    (5)

    图2(a)所示, 在保持纳米线宽w不变的情况下, 超导薄膜方块电阻Rs的增大将导致纳米线的超导相变温度Tc减小. 如当w减小到30 nm且Rs > 100 Ω/square时, Tc < 5 K, 进一步增大Rs > 300 Ω/square时, Tc将减小到3 K以下, 这对探测器的工作温度提出了更高的要求. 将(5)式代入到(2)式中, 即可获得Δ, Rsw之间的关系. 此外, 当探测器具有较高的超导临界转变电流时容易获得高的信噪比, 有利于光响应脉冲的读取. 因此本文研究了Rsw对探测器超导破对电流Idep (即超导临界转变电流的理论最大值)的影响. 这里参考Kupriyanov-Lukichev模型来计算纳米线的破对电流IKLdep[22]:

    图 2 (a) 超导薄膜方块电阻Rs与纳米线宽w对纳米线的超导相变温度Tc的影响; (b) 超导薄膜方块电阻Rs与纳米线宽w对纳米线的破对电流${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $的影响, ${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $随着Rs的增大以及w的减小而降低, 图中白色和黄色虚线分别表示${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $为3 μA和10 μA时的计算结果\r\nFig. 2. (a) Effects of the film sheet resistance Rs and the nanowire width w on the superconducting phase transition temperature Tc; (b) effects of Rs and w on the depairing current ${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $, it can be shown that ${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $ decreases with increasing Rs and decreasing w, and the white and yellow dashed lines represent the ${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $ calculation results of 3 μA and 10 μA, respectively.
    图 2  (a) 超导薄膜方块电阻Rs与纳米线宽w对纳米线的超导相变温度Tc的影响; (b) 超导薄膜方块电阻Rs与纳米线宽w对纳米线的破对电流IKLdep的影响, IKLdep随着Rs的增大以及w的减小而降低, 图中白色和黄色虚线分别表示IKLdep为3 μA和10 μA时的计算结果
    Fig. 2.  (a) Effects of the film sheet resistance Rs and the nanowire width w on the superconducting phase transition temperature Tc; (b) effects of Rs and w on the depairing current IKLdep, it can be shown that IKLdep decreases with increasing Rs and decreasing w, and the white and yellow dashed lines represent the IKLdep calculation results of 3 μA and 10 μA, respectively.
    IKLdep(t)=1.747w(kBTc)1.5eRsDpd(t)pd(0)×(1t2)1.5(1+t1.5)0.5(1+t)0.25
    (6)

    其中, pd(t)表示一个与温度相关的修正因子. 如图2(b)所示, 随着w的减小以及Rs的增加, IKLdep呈现下降趋势. 为便于直观地分析, 图2(b)设置了白色和黄色两条刻度线, 分别表示IKLdep为3 μA和10 μA的情况, 在刻度线上方且越远离刻度线, IKLdep越小. 在保持IKLdep不变时, 随着w的减小, 相应的Rs将加速下降. 如当IKLdep ≥ 3 μA时, 若w = 50 nm, 则相应的Rs可持续增大, 最大可到500 Ω/square; 若w = 30 nm, 则Rs最高不能超过340 Ω/square.

    结合前面的分析, 为进一步表征超导薄膜方块电阻Rs与纳米线宽w对SNSPD探测截止波长λc的影响, 本文评估了薄膜的电子热化时间τth, 根据Zhang等[23]的研究结果, 非晶超导薄膜的电子热化时间τth与薄膜超导相变温度Tc0之间存在关系: τth = αTc0–1.5, 其中常数因子α = 515.74 ps⋅K1.5. 如图3(a)所示, 当SNSPD的最大偏置电流IB可达到0.9IKLdep时, 在不同的线宽条件下, Rs越大可使λc越长. 其中绿色、黄色以及白色三条虚线代表λc分别对应2.5, 5.0和10 μm三个波长的结果, 由此可知在w > 25 nm的条件下, 当保持λc的增量不变时, w越大将导致相应的Rs所对应的增量越大. 由此说明当超导薄膜的方块电阻不易大幅度调控时, 较窄的超导纳米线在探测中长波红外光子时更具优势. 而对于常规SNSPD (w > 50 nm且Rs < 400 Ω/square)而言, 在避免器件结构等因素压缩超流从而保证较高归一化偏置电流(IB/IKLdep)的前提下, 探测器可在中红外波段(> 2.5 μm)上获得饱和的量子效率. 此外, 当w < 25 nm且保持λc不变时, 线宽的微小变化将导致相应的Rs大幅度涨落, 如当λc = 10 μm时, w = 25 nm所对应的Rs = 280 Ω/square, 而当w降低了2 nm后, 对应的Rs将低于150 Ω/square. 在不考虑制备工艺的前提下, 理论计算表明, 当w减小到20 nm且Rs ≥ 450 Ω/square时, λc将超过150 μm.

    图 3 (a) 当SNSPD的最大偏置电流IB可达到0.9${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $时, 超导薄膜方块电阻Rs与纳米线宽w对SNSPD探测截止波长λc的影响; (b) 当SNSPD的最大偏置电流IB降低到0.5${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $时, Rs与w对λc的影响 (图中绿色、黄色以及白色三条虚线分别表示三个λc的刻度线, 如当(w, Rs)的坐标点处于白色虚线上方时, λc > 10 μm)\r\nFig. 3. (a) Effects of the film sheet resistance Rs and the nanowire width w on the cutoff wavelength λc when the maximum bias current IB of the SNSPD can reach 0.9${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $; (b) effects of Rs and w on λc when the maximum IB can only reach 0.5${I}_{\rm{d}\rm{e}\rm{p}}^{\rm{K}\rm{L}} $ (Green, yellow, and white dashed lines represent the scale lines of the three λc values. For example, if the coordinate point of (w, Rs) stays above the white dashed line, λc > 10 μm).
    图 3  (a) 当SNSPD的最大偏置电流IB可达到0.9IKLdep时, 超导薄膜方块电阻Rs与纳米线宽w对SNSPD探测截止波长λc的影响; (b) 当SNSPD的最大偏置电流IB降低到0.5IKLdep时, Rswλc的影响 (图中绿色、黄色以及白色三条虚线分别表示三个λc的刻度线, 如当(w, Rs)的坐标点处于白色虚线上方时, λc > 10 μm)
    Fig. 3.  (a) Effects of the film sheet resistance Rs and the nanowire width w on the cutoff wavelength λc when the maximum bias current IB of the SNSPD can reach 0.9IKLdep; (b) effects of Rs and w on λc when the maximum IB can only reach 0.5IKLdep (Green, yellow, and white dashed lines represent the scale lines of the three λc values. For example, if the coordinate point of (w, Rs) stays above the white dashed line, λc > 10 μm).

    为分析探测器在较低偏置电流下的结果, 本文将最大偏置电流IB降低到0.5IKLdep时, 得到λc, Rsw的关系(图3(b)). 与高偏置电流相比, 低偏置电流下要获得相同的探测截止波长, 探测器对Rs以及w的要求更加苛刻, 如当Rs < 500 Ω/square时, 要使得探测器的λc增大到10 μm, 所需要的纳米线的宽度将低于25 nm, 这对器件制备工艺提出了巨大的挑战. 此外, 能看到此时对于常规SNSPD而言, λc主要分布在近红外波段, 因此常规SNSPD难以在中红外波段上获得饱和的量子效率.

    总的来说, 通过对超导薄膜无序的定量调控(增大Rs), 可有效增大λc, 在高归一化偏置电流的条件下, 可使得SNSPD的探测截止波长覆盖可见至远红外波段. 在λc的温度相关性方面, 研究表明当SNSPD的工作温度T < 0.1Tc时, λc可认为是一个与T无关的量. 然而, 从器件制备与应用的角度上看, 持续的增大Rs将带来探测器的超导相变温度Tc以及超导破对电流IKLdep下降, 且这种下降趋势在w较小的情况下尤其明显, 这实际上并不利于探测器的正常工作以及信号读出. 因此, 在保持SNSPD具有较大λc的前提下, 如何提高TcIKLdep对推进SNSPD在中长波红外波段上的发展具有关键的科学价值和应用价值. 目前国内外相关研究单位普遍采用稀释制冷技术以及复杂低温读出电路来解决中长波红外SNSPD低Tc以及低信噪比的问题, 取得了一定的效果. 然而, 在推进探测器小型化和低成本的道路上, 中长波红外SNSPD仍然面临着一段很长的路.

    前期我们采用Mo0.8Si0.2超导薄膜所制备的SNSPD在1.55—5.07 μm的红外波段上测得量子效率超过97%, 然而测量得到器件的探测截止波长λc低于5 μm, 相应Mo0.8Si0.2薄膜的方块电阻Rs = 248.6 Ω/square, 纳米线宽度w = 30 nm[10]. 根据第2节的理论分析, 为了进一步提高器件的探测截止波长, 我们适当增大Mo0.8Si0.2薄膜的无序强度, 即在相同的测量条件下将薄膜的方块电阻Rs进一步增大到320 Ω/square, 同时保持线宽w不变. 探测器的总体结构如图4(a)所示, 为有效降低纳米线上缺陷引入的概率以达到减小超流压缩带来的不利影响, 本实验设计器件的核心光探测单元为一条10 μm长、30 nm宽的超导纳米线. 核心光探测单元动态电感小而使得响应脉冲能量主要集中在高频区域, 因此在读出电路中难以对电脉冲进行有效滤波而保证较高的信噪比. 为解决这一问题, 本实验在核心光探测单元电流输入端增加了一段脉冲信号展宽结构, 具体由180 nm线宽, 500 nm周期, 30 μm × 30 μm面积的蜿蜒纳米线组成.

    图 4 (a) 器件结构图, 主要包含用于信号脉冲展宽的蜿蜒纳米线结构和响应红外光子的窄纳米线, 这里为避免窄纳米线在制备过程中发生漂移, 在窄纳米线上增加了多个“十字”结构; (b) 信号脉冲展宽蜿蜒纳米线的局部SEM图, 纳米线宽为180 nm; (c) 窄纳米线的局部放大图; (d) 窄纳米线的局部SEM图, 测量得到纳米线的宽度为30 nm\r\nFig. 4. (a) Structure diagram of the detector, which mainly includes the signal pulse-broadened meander nanowire and the narrow nanowire that detects the infrared photons, many cross structures were added to avoid the drift behavior of narrow nanowire during the nanofabrication; (b) SEM image of the signal pulse-broadened meander nanowire, the measured nanowire width is 180 nm; (c) local magnification image of the narrow nanowire; (d) SEM image of the narrow nanowire, the measured nanowire width is 30 nm.
    图 4  (a) 器件结构图, 主要包含用于信号脉冲展宽的蜿蜒纳米线结构和响应红外光子的窄纳米线, 这里为避免窄纳米线在制备过程中发生漂移, 在窄纳米线上增加了多个“十字”结构; (b) 信号脉冲展宽蜿蜒纳米线的局部SEM图, 纳米线宽为180 nm; (c) 窄纳米线的局部放大图; (d) 窄纳米线的局部SEM图, 测量得到纳米线的宽度为30 nm
    Fig. 4.  (a) Structure diagram of the detector, which mainly includes the signal pulse-broadened meander nanowire and the narrow nanowire that detects the infrared photons, many cross structures were added to avoid the drift behavior of narrow nanowire during the nanofabrication; (b) SEM image of the signal pulse-broadened meander nanowire, the measured nanowire width is 180 nm; (c) local magnification image of the narrow nanowire; (d) SEM image of the narrow nanowire, the measured nanowire width is 30 nm.

    图4(b)为脉冲信号展宽结构的局部扫描电子显微镜(scanning electron microscope, SEM)图, 实际制备得到的蜿蜒纳米线宽度与设计值保持一致. 从电流偏置方面看, 即使光探测单元上的偏置电流达到其临界值, 蜿蜒纳米线上的偏置电流仍不超过相应临界值的1/6, 因此在实际测量过程中可忽略蜿蜒结构带来的计数. 光探测单元与脉冲信号展宽结构的制备在相同厚度的Mo0.8Si0.2薄膜上进行. 采用聚氢倍半硅氧烷(hydrogen silsesquioxane, HSQ)负胶进行电子束曝光, 在显影过程中, 为防止窄纳米线出现漂移现象, 本实验在窄纳米线上增加了多个“十字”结构以达到增大窄纳米线与衬底之间黏附力的目的, 如图4(c)所示. 窄纳米线上的每个“十字”结构之间间距为750 nm, 在窄纳米线横向方向上, “十字”的宽度为440 nm. 在“十字”中心区域, 本文参考保角变换理论设计了优化圆角, 从而使得该中心区域处不会出现超流压缩的现象. 电子束曝光得到的纳米线结构通过反应离子刻蚀转移到Mo0.8Si0.2薄膜上, 采用SF6作为刻蚀气体, 标准状况下气压流量为40 mL/min, 采用CHF3作为钝化气体, 标准状况下气体流量为20 mL/min, 在4 Pa气压、80 W功率的环境下刻蚀32 s, 最终得到目标器件结构. 图4(d)为实际制备得到的核心光探测单元的局部SEM图, 与设计结构保持一致, 窄纳米线的测量宽度为30 nm.

    实验分别测量了SNSPD在6.0 μm和10.2 μm两个波长上的量子效率, 图5为实验中采用的红外SNSPD测量示意图. 选择了两种类型的光源, 其中采用冷红外黑体源(1500 K工作温度, 氮化硅发光材料, 美国海洋光学仪器生产)用于辐射6.0 μm波长的光信号. 采用量子级联激光器辐射10.2 μm中心波长的光信号, 光源输出光谱宽度小于10 nm, 激光发散角为5.5 mrad, 工作温度恒定在25 ℃, 最大辐射功率可达到毫瓦量级. 光源产生的红外信号通过一段长度可调的光学套筒后形成的光斑尺寸增大, 可降低器件光耦合的难度. 可调中性密度衰减器用于调控出射光功率的衰减倍率, 光信号经衰减后通过窄带滤波片(中心波长分别为6.0 μm和10.2 μm)以及ZnSe光学窗口进入到稀释制冷机内部, 再经过一级光密度Od = 3的固定衰减器后, 最终到达SNSPD的光敏面上. 实验中, 采用一个已串联100 kΩ电阻的低噪声电压源给SNSPD提供电流偏置, SNSPD吸收单光子并将其转化为一个电脉冲信号, 电脉冲信号通过外部电路中的低噪声常温放大器(型号AU1338, 0.3—350.0 MHz工作频带, 美国MITEQ公司生产, 增益大于70 dB)进行放大, 并由计数器(型号SR400, 美国Stanford Research Systems公司研制)采集读出, 从而完成一次光子探测.

    图 5 红外SNSPD测量示意图, 红外光源输出的信号光通过光学套筒、可调中性密度衰减器、窄带滤波片、稀释制冷机的ZnSe光学窗口以及制冷机内部的固定衰减器(光密度Od = 3), 最终覆盖SNSPD的光敏面. SNSPD吸收单光子并将其转化为一个电脉冲信号, 电脉冲信号通过外部电路进行放大并读出, 从而完成一次光子探测\r\nFig. 5. In the measurement diagram of the infrared SNSPD, the signal photons are emitted from the light source and finally arrive at the active area of the detector through the optical sleeve, the adjustable neutral density attenuator, the narrow band filter, the ZnSe optical window of the diluted refrigerator, and the fixed attenuator inside the refrigerator (with an optical density Od = 3). The SNSPD absorbs one photon and converts it to an electrical pulse, and the pulse is amplified and read through the external circuit; thus, a photon detection event is finished.
    图 5  红外SNSPD测量示意图, 红外光源输出的信号光通过光学套筒、可调中性密度衰减器、窄带滤波片、稀释制冷机的ZnSe光学窗口以及制冷机内部的固定衰减器(光密度Od = 3), 最终覆盖SNSPD的光敏面. SNSPD吸收单光子并将其转化为一个电脉冲信号, 电脉冲信号通过外部电路进行放大并读出, 从而完成一次光子探测
    Fig. 5.  In the measurement diagram of the infrared SNSPD, the signal photons are emitted from the light source and finally arrive at the active area of the detector through the optical sleeve, the adjustable neutral density attenuator, the narrow band filter, the ZnSe optical window of the diluted refrigerator, and the fixed attenuator inside the refrigerator (with an optical density Od = 3). The SNSPD absorbs one photon and converts it to an electrical pulse, and the pulse is amplified and read through the external circuit; thus, a photon detection event is finished.

    在50 mK的温度下, 实验首先测量了SNSPD对6.0 μm波长的光探测结果, 如图6所示. 量子效率ηi通常定义为探测器吸收一个光子对应产生一个可探测电脉冲信号的概率, 当一个光子对应一个电脉冲信号时, 可认为探测器的量子效率达到饱和. 在SNSPD探测技术中, 定义ηi = Pc/Ps, 其中Pc为探测器的光子计数率, 而Ps表示光子计数率达到饱和(不再随偏置电流的变化而变化)状态下的结果. 实验中, Pc = CRBc, CR为探测系统产生的总的计数率, 包含了光子计数率以及背景计数率Bc.

    图 6 SNSPD在6.0 μm波长上的量子效率ηi以及背景辐射计数Bc随归一化偏置电流IB/ISW的变化关系, 红色曲线表示Fano涨落理论对实验结果的拟合, 实际测到的最大量子效率可达到完全饱和\r\nFig. 6. Normalized bias current-dependent quantum efficiency ηi and background count Bc of the SNSPD at 6.0 μm. The red curve represents the fitting result based on the Fano fluctuation theory.
    图 6  SNSPD在6.0 μm波长上的量子效率ηi以及背景辐射计数Bc随归一化偏置电流IB/ISW的变化关系, 红色曲线表示Fano涨落理论对实验结果的拟合, 实际测到的最大量子效率可达到完全饱和
    Fig. 6.  Normalized bias current-dependent quantum efficiency ηi and background count Bc of the SNSPD at 6.0 μm. The red curve represents the fitting result based on the Fano fluctuation theory.

    实验中首先测量了Bc的大小. 测量方法如下: 关闭光源并将稀释制冷机的窗口做电磁屏蔽, 进而扫描得到Bc随偏置电流IB的变化关系. 从图6可以看到, Bc随着偏置电流IB的增大具有一定的饱和趋势, 且Bc的最大值不超过103 counts/s. 由此表明, 组成Bc的两大因素中, 由温度为300 K的环境产生的红外背景辐射计数率占据了主要部分, 而器件的本征暗计数较少, 这是因为受磁涡旋运动的影响, 本征暗计数随IB的增加往往呈现出指数上升的趋势[24]. 当IB接近临界转变电流ISW时, 器件的Bc并没有明显的激增, 推测可能是因为在mK量级低温下, 磁涡旋的运动受到了抑制.

    此外, 在量子效率ηi的测量上, 随着偏置电流IB的逐渐增大, SNSPD在6.0 μm波长上的ηi逐渐增大至完全饱和状态, 并呈现出一个明显的“S”形曲线变化形式. 由于红外黑体源较大的发散角以及在6.0 μm波长上较弱的辐射功率, 使得单位时间内实际到达SNSPD光敏面上的光子数较少, 因而SNSPD的饱和光子计数率Ps仅达到103 counts/s量级, 与背景辐射计数率Bc相当. 此外, 受Bc以及入射光功率涨落的影响, 在不同的偏置电流IB下实际获得的Pc在逐渐达到饱和的过程中也出现了涨落. 根据Kozorezov等[25]的研究结果, Fano涨落现象将导致纳米线上光响应过程中传递给准粒子的能量存在不确定性, 因而使得量子效率ηi与归一化偏置电流IB/ISW之间存在以下关系:

    ηi=12erfc(I0IB/ISWΔI)
    (7)

    其中, I0 = Ic0/ISW, Ic0表示当Pc/Ps = 0.5时所对应的偏置电流; ΔI = ΔIB/ISW, ΔIB = IB1 IB2 (对于IB1, ηi = 80%; 对于IB2, ηi = 20%), 表示ηi在偏置电流上的转变宽度. 红色曲线表示Fano涨落理论对实验结果的拟合, 根据拟合结果可得到I0 = 0.81, ΔI = 0.1. 理论对实验结果的合理解释表明, Fano涨落机制在中长波红外SNSPD将光信号转化为电信号的过程中扮演了重要的角色.

    当SNSPD的探测波长增大到10.2 μm时, 再次测量ηi随偏置电流的变化关系. 当归一化偏置电流IB/ISW超过0.7以后, SNSPD的光子计数率Pc快速增加但未出现饱和, 因此难以直接得到Ps的实际值. 将(7)式等效变化可得到: Pc = Ps/2 × erfc[(I0IB/ISW)/ΔI ], 增加Ps为拟合因子. 经过最佳拟合后可以得到Ps = 5300 counts/s, I0 = 0.9, ΔI = 0.1. 进一步, 基于ηi = Pc/Ps关系可知ηi随归一化偏置电流的变化关系, 如图7所示.

    图 7 SNSPD对10.2 μm波长的量子效率随归一化偏置电流的变化, 红色曲线是Fano涨落理论对实验结果的拟合\r\nFig. 7. Normalized bias current-dependent quantum efficiency ηi of the SNSPD at 10.2 μm. The red curve represents the fitting result based on the Fano fluctuation theory.
    图 7  SNSPD对10.2 μm波长的量子效率随归一化偏置电流的变化, 红色曲线是Fano涨落理论对实验结果的拟合
    Fig. 7.  Normalized bias current-dependent quantum efficiency ηi of the SNSPD at 10.2 μm. The red curve represents the fitting result based on the Fano fluctuation theory.

    从实验结果可得当IB/ISW = 0.9时, ηi达到53%. 研究发现, 在实验中由于电路出现不规律振荡的原因, IB无法正常偏置到0.9ISW以上. 通过Fano涨落理论可以预测, IB/ISW = 1时, ηi可达到92%. 因此, 在未来的工作中, 我们将努力克服读出电路不规律振荡的难题, 从而在光响应测量中提高IB的偏置上限.

    综上, 本文从实验的角度对无序增大SNSPD探测截止波长λc的理论预测进行了论证. 通过增大薄膜方块电阻Rs, λc已从前期低于5 μm的基础上增大到了6 μm, 同时在10.2 μm的波长上也展现了ηi可达92%的探测潜力. 由此可预测在超导能隙以及器件结构尺寸调控之外, 无序调控将有可能成为研制高性能中长波红外SNSPD的另一有效技术方案. 而对于如何实现无序的可控研究, 除了减小薄膜厚度之外, 目前其他技术方法包括: 纳米多孔研究[26]、层状缺陷引入[27]、薄膜组分比例调控[28]以及离子注入[29]等. 如何寻找可行且最优的技术方法, 是一个亟待解决的难题.

    本文从无序出发提出了增大SNSPD探测截止波长λc的技术方法, 并进一步讨论了无序以及尺寸变化对λc的影响. 研究表明, 超导薄膜方块电阻Rs的增大将同步增大λc, 尤其当纳米线宽w较小时, λc的增大速率更快. 如在IB/IKLdep = 0.9, w = 30 nm且Rs > 380 Ω/square时, λc > 10 μm. 在实验方面, 本文制备了常温方块电阻Rs, 约为320 Ω/square且线宽w = 30 nm的Mo0.8Si0.2红外SNSPD, 将器件工作波段扩展到了5—10 μm. 在6.0 μm波长上SNSPD可获得完全饱和的量子效率ηi, 在10.2 μm长波红外上ηi达到53%, 当排除超流压缩的影响时, ηi理论上最高可达到92%. 此外, 如何平衡器件工作温度、信噪比二者与λc之间的关系以及探索最优的无序调控技术, 是中长波红外SNSPD未来发展中需要解决的两大难题.

    [1]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [2]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [3]

    Korzh B, Zhao Q Y, Allmaras J P, et al. 2020 Nat. Photonics 14 250Google Scholar

    [4]

    Wollman E E, Verma V B, Walter A B, Chiles J, Korzh B, Allmaras J P, Zhai Y, Lita A E, McCaughan A N, Schmidt E, Frasca S, Mirin R P, Nam S W, Shaw M D 2021 J. Astron. Telesc. Instruments, Syst. 7 1

    [5]

    Chen L, Lau J A, Schwarzer D, Meyer J, Verma V B, Wodtke A M 2019 Science 363 158Google Scholar

    [6]

    US DARPA 2021 Selects Research Teams For Invisible Headlights Programme [2021-07-13]

    [7]

    Engel A, Inderbitzin K, Schilling A, Lusche R, Semenov A, Hübers H W, Henrich D, Hofherr M, Il’in K, Siegel M 2013 IEEE Trans. Appl. Supercond. 23 2300505Google Scholar

    [8]

    Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar

    [9]

    Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W, Shaw M D 2021 APL Photonics 6 056101Google Scholar

    [10]

    Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Sci. Bull. 66 965Google Scholar

    [11]

    Dubi Y, Meir Y, Avishai Y 2007 Nature 449 876Google Scholar

    [12]

    Sacépé B, Dubouchet T, Chapelier C, Sanquer M, Ovadia M, Shahar D, Feigel’man M, Ioffe L 2011 Nat. Phys. 7 239Google Scholar

    [13]

    Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R, Sanquer M 2008 Phys. Rev. Lett. 101 157006Google Scholar

    [14]

    Frasca S, Korzh B, Colangeloet M, et al. 2019 Phys. Rev. B 100 054520Google Scholar

    [15]

    Finkel’stein A M 1994 Phys. B Condens. Matter 197 636Google Scholar

    [16]

    Semenov A, Engel A, Hübers H W, Il’in K, Siegel M 2005 Eur. Phys. J. B 47 495Google Scholar

    [17]

    Carrington A, Manzano F 2003 Phys. C Supercond. 385 205Google Scholar

    [18]

    Ivry Y, Kim C S, Dane A E, De Fazio D, McCaughan A N, Sunter K A, Zhao Q, Berggren K K 2014 Phys. Rev. B 90 214515

    [19]

    Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Res. 9 389Google Scholar

    [20]

    Simonin J 1986 Phys. Rev. B 33 7830Google Scholar

    [21]

    Chen Q, Zhang B, Zhang L B, Li F Y, Jin F F, Han H, Ge R, He G L, Li H C, Tan J R, Wang X H, Wang H, Yu S L, Jia X Q, Zhao Q Y, Tu X C, Kang L, Chen J, Wu P H 2022 Phys. Rev. B 105 014516Google Scholar

    [22]

    Kupriyanov M Y, Lukichev V F 1980 Sov. J. Low Temp. Phys. 6 210

    [23]

    Zhang L, You L, Yang X, Tang Y, Si M, Yan K, Zhang W, Li H, Zhou H, Peng W, Wang Z 2019 Appl. Phys. Lett. 115 132602Google Scholar

    [24]

    Yamashita T, Miki S, Makise K, Qiu W, Terai H, Fujiwara M, Sasaki M, Wang Z 2011 Appl. Phys. Lett. 99 161105Google Scholar

    [25]

    Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Phys. Rev. B 96 054507Google Scholar

    [26]

    Yang C, Liu Y, Wang Y, Feng L, He Q, Sun J, Tang Y, Wu C, Xiong J, Zhang W, Lin X, Yao H, Liu H, Fernandes G, Xu J, Valles J M, Wang J, Li Y 2019 Science 366 1505Google Scholar

    [27]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhko S, Ioffe L B, Altshuler B L, Roditchev D 2014 Nat. Phys. 10 444Google Scholar

    [28]

    Colangelo M, Walter A B, Korzh B A, Schmidt E, Bumble B, Lita A E, Beyer A D, Allmaras J P, Briggs R M, Kozorezov A G, Wollman E E, Shaw M D, Berggren K K 2022 Nano Lett. 22 5667Google Scholar

    [29]

    Zhang W, Jia Q, You L, Ou X, Huang H, Zhang L, Li H, Wang Z, Xie X 2019 Phys. Rev. Appl. 12 044040Google Scholar

    期刊类型引用(2)

    1. 李志健,李聪,刘浩,万超,米庆改,张磊,孙博,周业军,赵清源,武腾飞,王华兵. 空天目标光电跟踪系统研究综述. 中国激光. 2025(06): 38-61 . 百度学术
    2. 周飞,陈奇,刘浩,戴越,魏晨,袁杭,王昊,涂学凑,康琳,贾小氢,赵清源,陈健,张蜡宝,吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报. 2024(06): 340-347 . 百度学术

    其他类型引用(0)

  • 图 1  Mo0.8Si0.2薄膜的超导相变温度Tc0与厚度倒数1/d的关系, 红色直线为Simonin模型的拟合结果

    Figure 1.  Relationship between the superconducting phase transition critical temperature Tc0 and the reciprocal of the thickness 1/d of the Mo0.8Si0.2 thin film. The red curve shows the fitting results of the Simonin model.

    图 2  (a) 超导薄膜方块电阻Rs与纳米线宽w对纳米线的超导相变温度Tc的影响; (b) 超导薄膜方块电阻Rs与纳米线宽w对纳米线的破对电流IKLdep的影响, IKLdep随着Rs的增大以及w的减小而降低, 图中白色和黄色虚线分别表示IKLdep为3 μA和10 μA时的计算结果

    Figure 2.  (a) Effects of the film sheet resistance Rs and the nanowire width w on the superconducting phase transition temperature Tc; (b) effects of Rs and w on the depairing current IKLdep, it can be shown that IKLdep decreases with increasing Rs and decreasing w, and the white and yellow dashed lines represent the IKLdep calculation results of 3 μA and 10 μA, respectively.

    图 3  (a) 当SNSPD的最大偏置电流IB可达到0.9IKLdep时, 超导薄膜方块电阻Rs与纳米线宽w对SNSPD探测截止波长λc的影响; (b) 当SNSPD的最大偏置电流IB降低到0.5IKLdep时, Rswλc的影响 (图中绿色、黄色以及白色三条虚线分别表示三个λc的刻度线, 如当(w, Rs)的坐标点处于白色虚线上方时, λc > 10 μm)

    Figure 3.  (a) Effects of the film sheet resistance Rs and the nanowire width w on the cutoff wavelength λc when the maximum bias current IB of the SNSPD can reach 0.9IKLdep; (b) effects of Rs and w on λc when the maximum IB can only reach 0.5IKLdep (Green, yellow, and white dashed lines represent the scale lines of the three λc values. For example, if the coordinate point of (w, Rs) stays above the white dashed line, λc > 10 μm).

    图 4  (a) 器件结构图, 主要包含用于信号脉冲展宽的蜿蜒纳米线结构和响应红外光子的窄纳米线, 这里为避免窄纳米线在制备过程中发生漂移, 在窄纳米线上增加了多个“十字”结构; (b) 信号脉冲展宽蜿蜒纳米线的局部SEM图, 纳米线宽为180 nm; (c) 窄纳米线的局部放大图; (d) 窄纳米线的局部SEM图, 测量得到纳米线的宽度为30 nm

    Figure 4.  (a) Structure diagram of the detector, which mainly includes the signal pulse-broadened meander nanowire and the narrow nanowire that detects the infrared photons, many cross structures were added to avoid the drift behavior of narrow nanowire during the nanofabrication; (b) SEM image of the signal pulse-broadened meander nanowire, the measured nanowire width is 180 nm; (c) local magnification image of the narrow nanowire; (d) SEM image of the narrow nanowire, the measured nanowire width is 30 nm.

    图 5  红外SNSPD测量示意图, 红外光源输出的信号光通过光学套筒、可调中性密度衰减器、窄带滤波片、稀释制冷机的ZnSe光学窗口以及制冷机内部的固定衰减器(光密度Od = 3), 最终覆盖SNSPD的光敏面. SNSPD吸收单光子并将其转化为一个电脉冲信号, 电脉冲信号通过外部电路进行放大并读出, 从而完成一次光子探测

    Figure 5.  In the measurement diagram of the infrared SNSPD, the signal photons are emitted from the light source and finally arrive at the active area of the detector through the optical sleeve, the adjustable neutral density attenuator, the narrow band filter, the ZnSe optical window of the diluted refrigerator, and the fixed attenuator inside the refrigerator (with an optical density Od = 3). The SNSPD absorbs one photon and converts it to an electrical pulse, and the pulse is amplified and read through the external circuit; thus, a photon detection event is finished.

    图 6  SNSPD在6.0 μm波长上的量子效率ηi以及背景辐射计数Bc随归一化偏置电流IB/ISW的变化关系, 红色曲线表示Fano涨落理论对实验结果的拟合, 实际测到的最大量子效率可达到完全饱和

    Figure 6.  Normalized bias current-dependent quantum efficiency ηi and background count Bc of the SNSPD at 6.0 μm. The red curve represents the fitting result based on the Fano fluctuation theory.

    图 7  SNSPD对10.2 μm波长的量子效率随归一化偏置电流的变化, 红色曲线是Fano涨落理论对实验结果的拟合

    Figure 7.  Normalized bias current-dependent quantum efficiency ηi of the SNSPD at 10.2 μm. The red curve represents the fitting result based on the Fano fluctuation theory.

  • [1]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [2]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [3]

    Korzh B, Zhao Q Y, Allmaras J P, et al. 2020 Nat. Photonics 14 250Google Scholar

    [4]

    Wollman E E, Verma V B, Walter A B, Chiles J, Korzh B, Allmaras J P, Zhai Y, Lita A E, McCaughan A N, Schmidt E, Frasca S, Mirin R P, Nam S W, Shaw M D 2021 J. Astron. Telesc. Instruments, Syst. 7 1

    [5]

    Chen L, Lau J A, Schwarzer D, Meyer J, Verma V B, Wodtke A M 2019 Science 363 158Google Scholar

    [6]

    US DARPA 2021 Selects Research Teams For Invisible Headlights Programme [2021-07-13]

    [7]

    Engel A, Inderbitzin K, Schilling A, Lusche R, Semenov A, Hübers H W, Henrich D, Hofherr M, Il’in K, Siegel M 2013 IEEE Trans. Appl. Supercond. 23 2300505Google Scholar

    [8]

    Engel A, Renema J J, Il’in K, Semenov A 2015 Supercond. Sci. Technol. 28 114003Google Scholar

    [9]

    Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W, Shaw M D 2021 APL Photonics 6 056101Google Scholar

    [10]

    Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Sci. Bull. 66 965Google Scholar

    [11]

    Dubi Y, Meir Y, Avishai Y 2007 Nature 449 876Google Scholar

    [12]

    Sacépé B, Dubouchet T, Chapelier C, Sanquer M, Ovadia M, Shahar D, Feigel’man M, Ioffe L 2011 Nat. Phys. 7 239Google Scholar

    [13]

    Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R, Sanquer M 2008 Phys. Rev. Lett. 101 157006Google Scholar

    [14]

    Frasca S, Korzh B, Colangeloet M, et al. 2019 Phys. Rev. B 100 054520Google Scholar

    [15]

    Finkel’stein A M 1994 Phys. B Condens. Matter 197 636Google Scholar

    [16]

    Semenov A, Engel A, Hübers H W, Il’in K, Siegel M 2005 Eur. Phys. J. B 47 495Google Scholar

    [17]

    Carrington A, Manzano F 2003 Phys. C Supercond. 385 205Google Scholar

    [18]

    Ivry Y, Kim C S, Dane A E, De Fazio D, McCaughan A N, Sunter K A, Zhao Q, Berggren K K 2014 Phys. Rev. B 90 214515

    [19]

    Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Res. 9 389Google Scholar

    [20]

    Simonin J 1986 Phys. Rev. B 33 7830Google Scholar

    [21]

    Chen Q, Zhang B, Zhang L B, Li F Y, Jin F F, Han H, Ge R, He G L, Li H C, Tan J R, Wang X H, Wang H, Yu S L, Jia X Q, Zhao Q Y, Tu X C, Kang L, Chen J, Wu P H 2022 Phys. Rev. B 105 014516Google Scholar

    [22]

    Kupriyanov M Y, Lukichev V F 1980 Sov. J. Low Temp. Phys. 6 210

    [23]

    Zhang L, You L, Yang X, Tang Y, Si M, Yan K, Zhang W, Li H, Zhou H, Peng W, Wang Z 2019 Appl. Phys. Lett. 115 132602Google Scholar

    [24]

    Yamashita T, Miki S, Makise K, Qiu W, Terai H, Fujiwara M, Sasaki M, Wang Z 2011 Appl. Phys. Lett. 99 161105Google Scholar

    [25]

    Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Phys. Rev. B 96 054507Google Scholar

    [26]

    Yang C, Liu Y, Wang Y, Feng L, He Q, Sun J, Tang Y, Wu C, Xiong J, Zhang W, Lin X, Yao H, Liu H, Fernandes G, Xu J, Valles J M, Wang J, Li Y 2019 Science 366 1505Google Scholar

    [27]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhko S, Ioffe L B, Altshuler B L, Roditchev D 2014 Nat. Phys. 10 444Google Scholar

    [28]

    Colangelo M, Walter A B, Korzh B A, Schmidt E, Bumble B, Lita A E, Beyer A D, Allmaras J P, Briggs R M, Kozorezov A G, Wollman E E, Shaw M D, Berggren K K 2022 Nano Lett. 22 5667Google Scholar

    [29]

    Zhang W, Jia Q, You L, Ou X, Huang H, Zhang L, Li H, Wang Z, Xie X 2019 Phys. Rev. Appl. 12 044040Google Scholar

  • [1] WANG Yu, LIANG Yulin, XING Yanxia. Topological Anderson insulator phase in graphene. Acta Physica Sinica, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [3] Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao. Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices. Acta Physica Sinica, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [4] Shen Shan-Shan, Gu Guo-Hua, Chen Qian, He Rui-Qing, Cao Qing-Qing. Time-space united coding spread spectrum single photon counting imaging method. Acta Physica Sinica, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [5] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [6] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [7] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [8] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [9] Meng Wen-Dong, Zhang Hai-Feng, Deng Hua-Rong, Tang Kai, Wu Zhi-Bo, Wang Yu-Rong, Wu Guang, Zhang Zhong-Ping, Chen Xin-Yang. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection. Acta Physica Sinica, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [10] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [11] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [12] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] Wang Xiao, Chen Li-Chao, Liu Yan-Hong, Shi Yun-Long, Sun Yong. Effect of longitudinal mode on the transmission properties near the Dirac-like point of the photonic crystals. Acta Physica Sinica, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [14] Huo Yong-Heng, Ma Wen-Quan, Zhang Yan-Hua, Huang Jian-Liang, Wei Yang, Cui Kai, Chen Liang-Hui. Dual-band quantum well infrared photodetectors with two ohmic contacts. Acta Physica Sinica, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
    [15] Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun. Localization of conduction electrons in nanometer metal Dy. Acta Physica Sinica, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [16] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [17] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [19] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [20] Xu Xing-Sheng, Chen Hong-Da, Zhang Dao-Zhong. Photon localization in amorphous photonic crystal. Acta Physica Sinica, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
  • 期刊类型引用(2)

    1. 李志健,李聪,刘浩,万超,米庆改,张磊,孙博,周业军,赵清源,武腾飞,王华兵. 空天目标光电跟踪系统研究综述. 中国激光. 2025(06): 38-61 . 百度学术
    2. 周飞,陈奇,刘浩,戴越,魏晨,袁杭,王昊,涂学凑,康琳,贾小氢,赵清源,陈健,张蜡宝,吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报. 2024(06): 340-347 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  6282
  • PDF Downloads:  164
  • Cited By: 2
Publishing process
  • Received Date:  07 August 2022
  • Accepted Date:  11 September 2022
  • Available Online:  10 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回