Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer

Miao Pei-Xian Wang Tao Shi Yan-Chao Gao Cun-Xu Cai Zhi-Wei Chai Guo-Zhi Chen Da-Yong Wang Jian-Bo

Citation:

Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer

Miao Pei-Xian, Wang Tao, Shi Yan-Chao, Gao Cun-Xu, Cai Zhi-Wei, Chai Guo-Zhi, Chen Da-Yong, Wang Jian-Bo
PDF
HTML
Get Citation
  • We report an experimental device and method of measuring the coercivity of soft magnetic material in an open magnetic circuit by using a pump-probe rubidium atomic magnetometer. The experimental device consists of a background magnetic field generation module, a pump-probe atomic magnetometer, a soft magnetic material magnetization and demagnetization module, and a software in a computer. The uniform background magnetic field ranging from 200 nT to 20000 nT along the z-axis at the rubidium bubble’s position is generated by a current carrying coil which is placed in a five-layer magnetic shielding cylinder. The saturation magnetization and demagnetization of soft magnetic material are realized by the soft magnetic sample magnetization and demagnetization module, respectively, which consists of a sample chamber, a soft magnetic sample, a magnetizing coil, a precision current source and a sample transfer rod. The sample chamber is placed in the magnetic field uniform area of the magnetizing coil which is placed in the magnetic shielding cylinder, and the sample transfer rod is used to transfer the soft magnetic sample into the center of the magnetizing coil. Both the rubidium bubble and the soft magnetic sample are placed on the z-axis of the magnetic shielding cylinder, and their distance is greater than or equal to 10 cm. The axis of the magnetizing coil coincides with the axis of the magnetic shielding cylinder, which ensures that the background magnetic field, the magnetic field generated by the magnetizing coil, and the magnetic field generated by the soft magnetic sample at the rubidium bubble’s position are all parallel to the axis direction of the magnetic shielding cylinder. The software in the computer realizes the magnetization and demagnetization of the soft magnetic sample by controlling the current output by the precision current source to the magnetizing coil, and also controls the pump-probe atomic magnetometer to measure the magnetic field at the rubidium bubble’s position. When the soft magnetic sample is magnetized or demagnetized in cycles, the magnetic field generated by the soft magnetic sample at the rubidium bubble’s position is obtained by subtracting the magnetic field value measured in advance when the sample is not placed in the sample chamber from the magnetic field value measured at same current value when the sample is placed in the sample chamber. Note that the sample does not move during the hysteresis loop measurement. When the magnetization of the soft magnetic sample decreases from the saturation value to zero, the magnetic field generated by the soft magnetic sample at the rubidium bubble’s position is zero, and the average coercivity of the sample can be calculated from the hysteresis loop.We use a superconducting quantum interference device (SQUID), a pump-detection rubidium atomic magnetometer and a Hall probe to measure the coercivity of the same permalloy strip sample, the average coercivities are 42.15 A/m, 40.632 A/m and 38.64 A/m, the biases of the hysteresis loops are 229.74 A/m, –0.95 A/m and –52.88 A/m, and the times of each measurement cycle are 9639 s, 1144 s, and 1630 s, respectively. The reproducibility of ten repeated measurements by using the pump-probe atomic magnetometer, expressed as relative standard deviation, is 0.16%, which is an order of magnitude higher than the counterparts from the methods described in China’s national standards GB/T 3656-2008 and GB/T 13888-2009. The accumulated drift of the biases of ten hysteresis loops measured by the pump-probe atomic magnetometer is 0.3 A/m. Based on the above experimental results, the coercivity measurement method by using the pump-probe atomic magnetometer has the advantages of no zero-point drift, good repeatability, fast measurement speed, and in-situ measurement, and has the potential applications in the basic research field and industrial field of magnetism.
      Corresponding author: Miao Pei-Xian, miaopeixian@163.com
    • Funds: Project supported by the Key R&D Program of Gansu Province of China (Grant No. 20YF3GA001) and the National Natural Science Foundation of China (Grant No. 12104198).
    [1]

    何峻, 赵栋梁 2015 金属功能材料 22 1Google Scholar

    He J, Zhao D L 2015 Metal. Funct. Mater. 22 1Google Scholar

    [2]

    陈海英 2000 现代仪器 6 5Google Scholar

    Chen H Y 2000 Modern Instruments 6 5Google Scholar

    [3]

    张焱, 高政祥, 高进 曹立志 2003 现代仪器 9 36Google Scholar

    Zhang Y, Gao Z X, Gao J, Cao L Z 2003 Modern Instruments 9 36Google Scholar

    [4]

    于红云 2014 物理学报 63 047502Google Scholar

    Yu H Y 2014 Acta Phys. Sin. 63 047502Google Scholar

    [5]

    GB/T 3656—2008 软磁材料矫顽力的抛移测量方法 第3页

    GB/T 3656—2008 Method of Coercivity Measurement for Magnetically Soft Materials by Pull out Procedure p3 (in Chinese)

    [6]

    GB/T 13888—2009/IEC 60404-7—1982 在开磁路中测量磁性材料矫顽力的方法 第2—4页

    GB/T 13888—2009/IEC 60404-7—1982 Method of Measurehment of the Coercivity of Magnetic Materials in an Open Magnetic Circuit pp2–4 (in Chinese)

    [7]

    GB/T 13012—2008/IEC 60404-4—2000 软磁材料直流磁性能的测量方法 第1—18页

    GB/T 13012—2008/IEC 60404-4—2000 Methods of Measurement of d. c. Magnetic Properties of Magnetically Soft Materials pp1–18 (in Chinese)

    [8]

    YB/T 5251—2013 软磁合金带卷绕环形铁芯 第7页

    YB/T 5251—2013 Magnetic Cores Wound with Soft Magnetic Alloy Strips p7 (in Chinese)

    [9]

    王春梅, 赵振杰, 阮建中, 李赫, 沈国土 2016 物理实验 36 13Google Scholar

    Wang C M, Zhao Z J, Ruan J Z, Li H, Shen G T 2016 Phys. Experiment. 36 13Google Scholar

    [10]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801Google Scholar

    [11]

    Kominis I K, Kornack T W, Allred J C, Romailis M V 2003 Nature 422 596Google Scholar

    [12]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [13]

    Master D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112Google Scholar

    [14]

    Xu S, Donaldson M H, Pines A, Rochester S M, Budker D, Yashchuk V V 2006 Appl. Phys. Lett. 89 224105Google Scholar

    [15]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. USA 103 12668Google Scholar

    [16]

    Johnson C, Adolphi N L, Butler K L, Lovato D M, Larson R, Schwindt P D D, Flynn E R 2012 J. Magn. Magn. Mater. 324 2613Google Scholar

    [17]

    Kim Y J, Savukov I, Huang J H, Nath P 2017 Appl. Phys. Lett. 110 043702Google Scholar

    [18]

    Colombo S, Lebedev V, Grujic Z D, Dolgovskiy V, Weis A 2016 Int. J. Mag. Part. Imag. 2 1604001Google Scholar

    [19]

    Miao P X, Zheng W Q, Yang S Y, Wu B, Cheng B, Tu J H, Ke H L, Yang W, Wang J, Cui J Z, Lin Q 2019 J. Opt. Soc. Am. B 36 819Google Scholar

    [20]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 物理学报 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [21]

    缪培贤, 杨世宇, 崔敬忠, 刘志栋 2020 真空与低温 26 494Google Scholar

    Miao P X, Yang S Y, Cui J Z, Liu Z D 2020 Vac. Cryogen. 26 494Google Scholar

    [22]

    陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽 2022 物理学报 71 024202Google Scholar

    Chen D Y, Miao P X, Shi Y C, Cui J Z, Liu Z D, Chen J, Wang K 2022 Acta Phys. Sin. 71 024202Google Scholar

    [23]

    杨宝, 缪培贤, 史彦超, 冯浩, 张金海, 崔敬忠, 刘志栋 2020 中国激光 47 1012001Google Scholar

    Yang B, Miao P X, Shi Y C, Feng H, Zhang J H, Cui J Z, Liu Z D 2020 Chin. J. Lasers 47 1012001Google Scholar

    [24]

    缪培贤 2022 真空与低温 28 592Google Scholar

    Miao P X 2022 Vac. Cryogen. 28 592Google Scholar

    [25]

    李东辉 2020 硕士学位论文 (南京: 东南大学)

    Li D H 2020 M. S. Thesis (Nanjing: Southeast University) (in Chinese)

  • 图 1  测量软磁样品矫顽力的实验装置示意图

    Figure 1.  Schematic diagram of experimental device for measuring the coercivity of soft magnetic sample.

    图 2  软磁样品及其磁滞回线 (a)坡莫合金带; (b)用SQUID测量的磁滞回线

    Figure 2.  Soft magnetic sample and its hysteresis loop: (a) Permalloy ribbon; (b) hysteresis loop measured by superconducting quantum interference device.

    图 3  在开磁路中利用抽运-检测型原子磁力仪测量软磁样品的矫顽力的实验结果 (a)用抽运-检测型原子磁力仪测量的数据曲线; (b)软磁样品的磁滞回线; (c)软磁样品的矫顽力; (d)磁滞回线的偏置

    Figure 3.  Experimental results of measuring the coercivity of a soft magnetic sample in an open magnetic circuit by a pump-probe atomic magnetometer: (a) Curves measured by the pump-probe atomic magnetometer; (b) hysteresis loops of the soft magnetic sample; (c) coercivity of the soft magnetic sample; (d) bias of the hysteresis loop.

    图 4  在开磁路中利用霍尔探头测量软磁样品矫顽力的实验结果 (a)测量装置示意图; (b)用霍尔探头测量的磁滞回线; (c)软磁样品的矫顽力; (d)磁滞回线的偏置

    Figure 4.  Experimental results of measuring the coercivity of a soft magnetic sample in an open magnetic circuit by a Hall probe: (a) Schematic diagram of experimental device; (b) hysteresis loops measured by the Hall probe; (c) coercivity of the soft magnetic sample; (d) bias of the hysteresis loop.

    图 5  3种磁强计分别测量软磁样品矫顽力时的磁场扫描过程 (a) SQUID; (b)抽运-检测型原子磁力仪; (c)霍尔探头

    Figure 5.  Magnetic field scanning process when three kinds of magnetometers measure the coercivity of soft magnetic sample respectively: (a) Superconducting quantum interference device; (b) pump-probe atomic magnetometer; (c) Hall probe.

  • [1]

    何峻, 赵栋梁 2015 金属功能材料 22 1Google Scholar

    He J, Zhao D L 2015 Metal. Funct. Mater. 22 1Google Scholar

    [2]

    陈海英 2000 现代仪器 6 5Google Scholar

    Chen H Y 2000 Modern Instruments 6 5Google Scholar

    [3]

    张焱, 高政祥, 高进 曹立志 2003 现代仪器 9 36Google Scholar

    Zhang Y, Gao Z X, Gao J, Cao L Z 2003 Modern Instruments 9 36Google Scholar

    [4]

    于红云 2014 物理学报 63 047502Google Scholar

    Yu H Y 2014 Acta Phys. Sin. 63 047502Google Scholar

    [5]

    GB/T 3656—2008 软磁材料矫顽力的抛移测量方法 第3页

    GB/T 3656—2008 Method of Coercivity Measurement for Magnetically Soft Materials by Pull out Procedure p3 (in Chinese)

    [6]

    GB/T 13888—2009/IEC 60404-7—1982 在开磁路中测量磁性材料矫顽力的方法 第2—4页

    GB/T 13888—2009/IEC 60404-7—1982 Method of Measurehment of the Coercivity of Magnetic Materials in an Open Magnetic Circuit pp2–4 (in Chinese)

    [7]

    GB/T 13012—2008/IEC 60404-4—2000 软磁材料直流磁性能的测量方法 第1—18页

    GB/T 13012—2008/IEC 60404-4—2000 Methods of Measurement of d. c. Magnetic Properties of Magnetically Soft Materials pp1–18 (in Chinese)

    [8]

    YB/T 5251—2013 软磁合金带卷绕环形铁芯 第7页

    YB/T 5251—2013 Magnetic Cores Wound with Soft Magnetic Alloy Strips p7 (in Chinese)

    [9]

    王春梅, 赵振杰, 阮建中, 李赫, 沈国土 2016 物理实验 36 13Google Scholar

    Wang C M, Zhao Z J, Ruan J Z, Li H, Shen G T 2016 Phys. Experiment. 36 13Google Scholar

    [10]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801Google Scholar

    [11]

    Kominis I K, Kornack T W, Allred J C, Romailis M V 2003 Nature 422 596Google Scholar

    [12]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [13]

    Master D, Pandey S, Ring H, Ledbetter M P, Knappe S, Kitching J, Budker D 2011 Rev. Sci. Instrum. 82 086112Google Scholar

    [14]

    Xu S, Donaldson M H, Pines A, Rochester S M, Budker D, Yashchuk V V 2006 Appl. Phys. Lett. 89 224105Google Scholar

    [15]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. USA 103 12668Google Scholar

    [16]

    Johnson C, Adolphi N L, Butler K L, Lovato D M, Larson R, Schwindt P D D, Flynn E R 2012 J. Magn. Magn. Mater. 324 2613Google Scholar

    [17]

    Kim Y J, Savukov I, Huang J H, Nath P 2017 Appl. Phys. Lett. 110 043702Google Scholar

    [18]

    Colombo S, Lebedev V, Grujic Z D, Dolgovskiy V, Weis A 2016 Int. J. Mag. Part. Imag. 2 1604001Google Scholar

    [19]

    Miao P X, Zheng W Q, Yang S Y, Wu B, Cheng B, Tu J H, Ke H L, Yang W, Wang J, Cui J Z, Lin Q 2019 J. Opt. Soc. Am. B 36 819Google Scholar

    [20]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 物理学报 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [21]

    缪培贤, 杨世宇, 崔敬忠, 刘志栋 2020 真空与低温 26 494Google Scholar

    Miao P X, Yang S Y, Cui J Z, Liu Z D 2020 Vac. Cryogen. 26 494Google Scholar

    [22]

    陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽 2022 物理学报 71 024202Google Scholar

    Chen D Y, Miao P X, Shi Y C, Cui J Z, Liu Z D, Chen J, Wang K 2022 Acta Phys. Sin. 71 024202Google Scholar

    [23]

    杨宝, 缪培贤, 史彦超, 冯浩, 张金海, 崔敬忠, 刘志栋 2020 中国激光 47 1012001Google Scholar

    Yang B, Miao P X, Shi Y C, Feng H, Zhang J H, Cui J Z, Liu Z D 2020 Chin. J. Lasers 47 1012001Google Scholar

    [24]

    缪培贤 2022 真空与低温 28 592Google Scholar

    Miao P X 2022 Vac. Cryogen. 28 592Google Scholar

    [25]

    李东辉 2020 硕士学位论文 (南京: 东南大学)

    Li D H 2020 M. S. Thesis (Nanjing: Southeast University) (in Chinese)

  • [1] Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan. Measurement of noise of current source by pump-probe atomic magnetometer. Acta Physica Sinica, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [2] Zhang Hao-Jie, Zhang Ru-Fei, Fu Li-Cheng, Gu Yi-Lun, Zhi Guo-Xiang, Dong Jin-Ou, Zhao Xue-Qin, Ning Fan-Long. (La1–xSrx)(Zn1–xMnx)SbO: A novel 1111-type diluted magnetic semiconductor. Acta Physica Sinica, 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [3] Measurement of the Noise of Current Source by Pump-probe Atomic Magnetometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211122
    [4] Li Zhu-Bai, Li Yun, Qin Yuan, Zhang Xue-Feng, Shen Bao-Gen. Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets. Acta Physica Sinica, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [5] Xiao Jun-Ru, Liu Zhong-Wu, Lou Hua-Shan, Zhan Hui-Xiong. Coercivity enhancement of waste Nd-Fe-B magnets by Pr70Cu30 grain boundary diffusion process. Acta Physica Sinica, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [6] Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong. Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. Acta Physica Sinica, 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [7] Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo. Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. Acta Physica Sinica, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [8] Hou Zhi-Peng, Su Feng, Wang Wen-Quan. High coercivity in Co79Zr18Cr3 magnet. Acta Physica Sinica, 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [9] Yu Hong-Yun. Effect of superconducting magnet remanence on the soft magnetic material measurements. Acta Physica Sinica, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [10] Guo Zi-Zheng, Hu Xu-Bo. Effects of stress on the hysteresis loss and coercivity of ferromagnetic film. Acta Physica Sinica, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [11] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [12] Yin Jin-Hua, Chen Xi-Fang, Zhang Shuai, Zhang Hong-Wei, Chen Jing-Lan, Jiang Hong-Wei, Wu Guang-Heng. Magnetic hardening of soft phase in nanocomposite permanent magnetic materials by exchange coupling. Acta Physica Sinica, 2010, 59(9): 6593-6598. doi: 10.7498/aps.59.6593
    [13] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [14] Qiu Xue-Jun, Zhang Yun-Peng, He Zheng-Hong, Bai Lang, Liu Guo-Lei, Wang Yue, Chen Peng, Xiong Zu-Hong. Control of coercivity of iron films deposited on porous silicon substrates. Acta Physica Sinica, 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [15] Chen Xian-Feng. Effect of the second-order magnetocrystalline anisotropic constant on the magnetization reversal in R2Fe14B magnets. Acta Physica Sinica, 2005, 54(8): 3856-3861. doi: 10.7498/aps.54.3856
    [16] Shi Hui-Gang, Si Ming-Su, Xue De-Sheng. Coercivity mechanism of segmented (A/B)m composite nanowire arrays. Acta Physica Sinica, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [17] Weng Zhen-Zhen, Feng Qian, Huang Zhi-Gao, Du You-Wei. Study on the coercivity and step effect of mixed magnetic films by micromagnetism and Monte Carlo simulation. Acta Physica Sinica, 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [18] Zhang Hong-Wei, Rong Chuan-Bing, Zhang Shao-Ying, Shen Bao-Gen. Investigation of high-performance hard magnetic properties of nanocomposite permanent magnets by micromagnetic finite element method*. Acta Physica Sinica, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [19] Zhang Xiao-Yu, Chen Ya-Jie. Abnormal coercivity behaviour in the magnetic percolation region of a magnetic g ranular composite. Acta Physica Sinica, 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [20] Gao Ru-Wei, Feng Wei-Cun, Wang Biao, Chen Wei, Han Guang-Bing, Zhang Peng, Liu Han-Qiang, Li Wei, Guo Yong-Quan, Li Xiu-Mei. Effective anisotropy and coercivity in nanocomposite permanent materials. Acta Physica Sinica, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
Metrics
  • Abstract views:  4402
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2022
  • Accepted Date:  27 August 2022
  • Available Online:  06 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回