Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization strategies for energy storage properties of polyvinylidene fluoride composites

Zha Jun-Wei Zha Lei-Jun Zheng Ming-Sheng

Citation:

Optimization strategies for energy storage properties of polyvinylidene fluoride composites

Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng
PDF
HTML
Get Citation
  • Dielectric capacitors have been widely used in crucial energy storage systems of electronic power systems because of their advantages such as fast charge discharge rates, long cycle lifetimes, low losses, and flexible and convenient processingc. However, the dielectric capacitors have lower energy storage densities than electrochemical energy storage devices, which makes them difficult to meet higher application requirements for electrical engineering at the present stage. Polyvinylidene fluoride (PVDF) based polymers show great potential in achieving improved energy storage properties, which is attributed to their high dielectric constants and high breakdown strengths. This work systematically reviews PVDF-based nanocomposites for energy storage applications. Dielectric constant, breakdown strength and charge discharge efficiency are three main parameters related to energy storage properties, which are proposed to discuss their mechanisms of action and optimization strategies. Finally, the key scientific problems of PVDF-based high energy storage composites are summarized and considered, and the future development trend of dielectric capacitors is also prospected.
      Corresponding author: Zha Jun-Wei, zhajw@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51977114).
    [1]

    Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292Google Scholar

    [2]

    Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609Google Scholar

    [3]

    Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790Google Scholar

    [4]

    Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834Google Scholar

    [5]

    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205Google Scholar

    [6]

    Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108Google Scholar

    [7]

    Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295Google Scholar

    [8]

    Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555Google Scholar

    [9]

    Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666Google Scholar

    [10]

    Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963Google Scholar

    [11]

    Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714Google Scholar

    [12]

    Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871Google Scholar

    [13]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [14]

    Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505Google Scholar

    [15]

    Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378Google Scholar

    [16]

    Zhu L 2014 J. Phys. Chem. Lett. 5 3677Google Scholar

    [17]

    Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465Google Scholar

    [18]

    Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078Google Scholar

    [19]

    Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739Google Scholar

    [20]

    Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277Google Scholar

    [21]

    Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar

    [22]

    Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957Google Scholar

    [23]

    Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384Google Scholar

    [24]

    Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373Google Scholar

    [25]

    Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731Google Scholar

    [26]

    Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119Google Scholar

    [27]

    Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821Google Scholar

    [28]

    Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar

    [29]

    Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297Google Scholar

    [30]

    Lovinger A J 1983 Science 220 1115Google Scholar

    [31]

    Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar

    [32]

    Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399Google Scholar

    [33]

    Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803Google Scholar

    [34]

    Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247Google Scholar

    [35]

    Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550Google Scholar

    [36]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 物理学报 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [37]

    王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 物理学报 69 217702Google Scholar

    Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702Google Scholar

    [38]

    Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071Google Scholar

    [40]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [41]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [42]

    Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313Google Scholar

    [43]

    Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668Google Scholar

    [44]

    Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904Google Scholar

    [45]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625Google Scholar

    [46]

    He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89Google Scholar

    [47]

    Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369Google Scholar

    [48]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [49]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [50]

    Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038Google Scholar

    [51]

    Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248Google Scholar

    [52]

    Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168Google Scholar

    [53]

    Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735Google Scholar

    [54]

    Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217

    [55]

    Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819Google Scholar

    [56]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [57]

    Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304Google Scholar

    [58]

    Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301Google Scholar

    [59]

    Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744Google Scholar

    [60]

    Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150

    [61]

    Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515Google Scholar

    [62]

    Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546Google Scholar

    [63]

    Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101Google Scholar

    [64]

    Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664Google Scholar

    [65]

    Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar

    [66]

    Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar

    [67]

    Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar

    [68]

    Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901Google Scholar

    [69]

    Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar

    [70]

    Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115Google Scholar

    [71]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [72]

    Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676Google Scholar

    [73]

    Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [74]

    Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar

    [75]

    Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339Google Scholar

    [76]

    Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043Google Scholar

    [77]

    Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775Google Scholar

    [78]

    Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824Google Scholar

    [79]

    Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737Google Scholar

    [80]

    Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371Google Scholar

    [81]

    Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062Google Scholar

    [82]

    Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1Google Scholar

  • 图 1  介质电容器的应用

    Figure 1.  Application of Dielectric Capacitors.

    图 2  D-E曲线示意图[14]

    Figure 2.  Schematic illustration of electric displacement (D)-electric field (E) loop [14].

    图 3  不同铁电结构电介质及其D-E曲线[16]

    Figure 3.  Dielectrics with different ferroelectric structures and their D-E curves16].

    图 4  沿c轴观察的PVDF四种相的单胞[28]

    Figure 4.  Unit cells of four PVDF phases observed along the c-axis 28].

    图 5  (a) NH2-GNDs/RGO/PVDF三元复合物制备流程; (b)不同PVDF基复合材料介电常数[43]

    Figure 5.  (a) NH2-GNDs/RGO/PVDF ternary complex preparation process; (b) different PVDF-based composite dielectric constants[43].

    图 6  (a) PDA表面改性减少漏电流示意图[50]; (b)不同小分子改性剂改性后击穿强度[52]

    Figure 6.  (a) schematic diagram of PDA surface modification to reduce leakage current [50]; (b) breakdown strength after modification with different small molecule modifiers [52].

    图 7  (a) BTO@TO纳米纤维及其与聚合物复合材料示意图与元素图; (b) PVDF基复合材料能量密度; (c)P(VDF-HFP)基复合材料能量密度[55,56]

    Figure 7.  (a) schematic and elemental diagrams of BTO@TO nanofibers and their composites with polymers; (b) energy density of PVDF-based composites; (c)energy density of P(VDF-HFP)-based composites [55,56].

    图 8  复合材料阻挡效应模型示意图

    Figure 8.  Schematic diagram of barrier effect model of composite material

    图 9  (a) PVDF/ P(VDF-TrFE-CFE)共混膜的储能密度与充放电效率[69]; (b)不同钛酸锶钡含量下单层膜与3层膜介电损耗; (c) TNF介电损耗降低示意图[76]

    Figure 9.  (a) Energy storage density and charge/discharge efficiency of PVDF/ P(VDF-TrFE-CFE) blended films[69]; (b) dielectric loss of monolayer and trilayer films with different barium strontium titanate content; (c) schematic diagram of TNF dielectric loss reduction [76]

  • [1]

    Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292Google Scholar

    [2]

    Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609Google Scholar

    [3]

    Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790Google Scholar

    [4]

    Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834Google Scholar

    [5]

    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205Google Scholar

    [6]

    Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108Google Scholar

    [7]

    Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295Google Scholar

    [8]

    Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555Google Scholar

    [9]

    Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666Google Scholar

    [10]

    Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963Google Scholar

    [11]

    Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714Google Scholar

    [12]

    Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871Google Scholar

    [13]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar

    [14]

    Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505Google Scholar

    [15]

    Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378Google Scholar

    [16]

    Zhu L 2014 J. Phys. Chem. Lett. 5 3677Google Scholar

    [17]

    Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465Google Scholar

    [18]

    Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078Google Scholar

    [19]

    Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739Google Scholar

    [20]

    Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277Google Scholar

    [21]

    Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar

    [22]

    Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957Google Scholar

    [23]

    Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384Google Scholar

    [24]

    Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373Google Scholar

    [25]

    Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731Google Scholar

    [26]

    Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119Google Scholar

    [27]

    Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821Google Scholar

    [28]

    Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar

    [29]

    Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297Google Scholar

    [30]

    Lovinger A J 1983 Science 220 1115Google Scholar

    [31]

    Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar

    [32]

    Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399Google Scholar

    [33]

    Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803Google Scholar

    [34]

    Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247Google Scholar

    [35]

    Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550Google Scholar

    [36]

    赵学童, 廖瑞金, 李建英, 王飞鹏 2015 物理学报 64 127701Google Scholar

    Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar

    [37]

    王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 物理学报 69 217702Google Scholar

    Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702Google Scholar

    [38]

    Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138Google Scholar

    [39]

    Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071Google Scholar

    [40]

    Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar

    [41]

    Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar

    [42]

    Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313Google Scholar

    [43]

    Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668Google Scholar

    [44]

    Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904Google Scholar

    [45]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625Google Scholar

    [46]

    He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89Google Scholar

    [47]

    Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369Google Scholar

    [48]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [49]

    Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar

    [50]

    Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038Google Scholar

    [51]

    Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248Google Scholar

    [52]

    Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168Google Scholar

    [53]

    Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735Google Scholar

    [54]

    Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217

    [55]

    Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819Google Scholar

    [56]

    Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar

    [57]

    Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304Google Scholar

    [58]

    Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301Google Scholar

    [59]

    Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744Google Scholar

    [60]

    Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150

    [61]

    Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515Google Scholar

    [62]

    Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546Google Scholar

    [63]

    Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101Google Scholar

    [64]

    Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664Google Scholar

    [65]

    Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar

    [66]

    Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar

    [67]

    Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar

    [68]

    Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901Google Scholar

    [69]

    Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar

    [70]

    Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115Google Scholar

    [71]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [72]

    Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676Google Scholar

    [73]

    Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [74]

    Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar

    [75]

    Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339Google Scholar

    [76]

    Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043Google Scholar

    [77]

    Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775Google Scholar

    [78]

    Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824Google Scholar

    [79]

    Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737Google Scholar

    [80]

    Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371Google Scholar

    [81]

    Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062Google Scholar

    [82]

    Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1Google Scholar

  • [1] Song Xiao-Fan, Min Dao-Min, Gao Zi-Wei, Wang Po-Xin, Hao Yu-Tao, Gao Jing-Hui, Zhong Li-Sheng. Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric. Acta Physica Sinica, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [2] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [3] Tan Song-Lin, Zhuang Yong-Qi, Yi Jian-Hong. Preparation and properties of multi-walled carbon nanotube reinforced alumina composites by sol- spray method. Acta Physica Sinica, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] Zha Jun-Wei, Wang Fan. Research progress of high thermal conductivity polyimide dielectric films. Acta Physica Sinica, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [5] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [6] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [7] Shen Zhong-Hui, Jiang Yan-Da, Li Bao-Wen, Zhang Xin. Reseach progress of ferroelectric polymer nanocomposites with high energy storage density. Acta Physica Sinica, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [8] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [9] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [10] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [11] Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling. Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films. Acta Physica Sinica, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [12] Li Zhen-Wu. Opto-electronic properties of the single-walled carbon nanotube film and melamine formaldehyde resin composite. Acta Physica Sinica, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [13] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [14] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Hao Juan. Investigation on characteristics of solar cells made of MOPPV/ZnSe quantum dots composite system. Acta Physica Sinica, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [15] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Wang Xue-Yan. Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites. Acta Physica Sinica, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [16] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [17] Huo Yan, Zhang Cun-Lin. Quantitative infrared prediction method for defect depth in carbon fiber reinforced plastics composite. Acta Physica Sinica, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [18] Zhou Li-Mei, Li Wei, Jiang Jun, Chen Jian-Min, Li Yong, Xu Gao-Jie. Preparation and thermoelectric properties of β-Zn4Sb3/Zn1-δAlδO. Acta Physica Sinica, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [19] Sun Jian-Ping, Weng Jia-Bao, Huang Xiao-Zhu, Ma Lin-Pu. In-situ polymerization and properties of poly (2,5-dibutyloxy-1,4-phenylene vinylene)/multi-walled carbon nanotube composites. Acta Physica Sinica, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [20] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
Metrics
  • Abstract views:  5046
  • PDF Downloads:  200
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2022
  • Accepted Date:  10 November 2022
  • Available Online:  28 November 2022
  • Published Online:  05 January 2023

/

返回文章
返回