Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power

Liu Kun Xiang Hong-Fu Zhou Xiong-Feng Xia Hao-Tian Li Hua

Citation:

Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power

Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua
PDF
HTML
Get Citation
  • In the application of atmospheric pressure plasma jet, because the frequency of AC power supply is limited in the kHz range, the research on the influence of power supply electrical parameters on discharge is basically aimed at the variation of plasma jet characteristics with a single driving electrical parameter ( such as voltage and frequency). However, the discharge power usually changes with a single electrical parameter changing, which can undoubtedly affect the discharge performances including the plasma physical parameters and generated reactive species, resulting in the failure to reflect the influence of the single driving parameter on the discharge. In this study, an atmospheric pressure argon plasma jet is driven by a home-made AC power supply with adjustable pulse modulated duty cycle. And combining the diagnosis of the optical emission spectrum and the optical absorption spectrum, the influences of the voltage, frequency and pulse modulated duty cycle parameters on the gas temperature Tg, electron excitation temperature Texc, electron density ne, and OH radical particle number density of the plasma jet are studied under a constant discharge power of 2 W. The results show that at the constant power, the electron density ne does not change with the variation of electrical parameters as the linkage change of electrical parameters will offset the influence of a single parameter on the electron density, while the gas temperature Tg, electron excitation temperature Texc, and OH radical particle density are most affected by the pulse modulated duty cycle, followed by driving voltage, and the frequency effect is the smallest. Under the constant power, as the frequency decreases, the voltage will increase, and also the gas temperature Tg, electron excitation temperature Texc, and OH radical particle number density will increase. On the contrary, although the voltage also increases as the pulse modulated duty cycle decreases, the gas temperature Tg, electron excitation temperature Texc, and OH radical particle number density are all reduced. In addition, the results indicate that reducing the duty cycle of AC power can make the atmospheric pressure plasma jet produce more OH radicals at lower gas temperature. This study provides a new insight into the influence of electrical parameters on the characteristics of atmospheric pressure plasma jets under constant power, and also presents a guidance for choosing power parameters of plasma jets with low gas temperature and high density of reactive species, which is conducive to the development of atmospheric pressure plasma jets in biomedicine and other fields.
      Corresponding author: Liu Kun, liukun@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877021), the Foundation of State Key Laboratory of Electrical Insulation for Power Equipment, China (Grant No. EIPE21204), and the Foundation of Guangxi Key Laboratory of Automatic Testing Technology and Instruments, China (Grant No. YQ21204).
    [1]

    Fallon M, Kennedy S, Kumar S, Daniels S, Humphreys H 2021 Plasma Med. 11 15

    [2]

    Wang T, Wang J H, Wang S Q, lv L, Li M, Shi L P 2021 Appl. Surf. Sci. 570 151258Google Scholar

    [3]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Wang R X, Xia Z C, Kong X H, Xue S, Wang H Y 2022 Surf. Coat. Technol. 437 128365Google Scholar

    [6]

    Shimizu T, Ikehara Y 2017 J. Phys. D: Appl. Phys. 50 503001Google Scholar

    [7]

    Huang Y M, Chang W C, Hsu C L 2021 Food Res. Int. 141 110108Google Scholar

    [8]

    Lu X P, Keudar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R 138 36Google Scholar

    [9]

    Schweigert I, Zakrevsky D, Milakhina E, Gugin P, Biryukov M, Patrakova E, Koval O 2022 Plasma Phys. Control. Fusion 64 044015Google Scholar

    [10]

    Pang B L, Liu Z J, Wang S T, Gao Y T, Zhang H Y, Zhang F, Tantai X M, Xu D H, Liu D X, Kong M G 2021 J. Appl. Phys. 130 153301Google Scholar

    [11]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [12]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [13]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ Microbiol. 84 e00726

    [14]

    Xiong Q, Lu X, Ostrikov K, Jiang Z Y 2009 Phys. Plasmas 16 043505Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Gott R P, Xu K G 2019 IEEE Trans. Plasma Sci. 47 4988Google Scholar

    [17]

    Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q Y, Zhang J L, Wen X Q 2012 Thin Solid Films 521 265Google Scholar

    [18]

    Moon S Y, Kim D B, Gweon B, Choe W 2008 Appl. Phys. Lett. 93 2215006

    [19]

    Long Y X, Li H X, Meng X S, Li J, Xiang Z C 2018 Mod. Phys. Lett. B 32 1850315

    [20]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [23]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [24]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [25]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [26]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 物理学报 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [27]

    Yuan H, Feng J, Yang D Z, Zhou X F, Liang J P, Zhang L, Zhao Z L, Wang W C 2020 J. Appl. Phys. 128 093303Google Scholar

    [28]

    王伟, 王永刚, 吴忠航, 饶俊峰, 姜松, 李孜 2023 光谱学与光谱分析 43 455Google Scholar

    Wang W, Wang Y G, WU Z H, Rao J F, Jiang S, Li Z 2023 Spectrosc. Spectral Anal. 43 455Google Scholar

    [29]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [30]

    Tu X, Cheron B G, Yan J H, Cen K F 2007 Plasma Sources Sci. Technol. 16 803Google Scholar

    [31]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D:Appl. Phys. 55 265202Google Scholar

    [32]

    Bruggeman P, Schram D, Gonzalez M 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar

    [33]

    Belostotskiy S G, Ouk T, Donnelly V M 2010 J. Appl. Phys. 107 05330

    [34]

    Zhou X F, Wang W C, Yang D Z, Liang J P, Zhao Z L, Yuan H 2019 Plasma Process Polym. 16 e1800124Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J Phys. D:Appl. Phys. 46 275201Google Scholar

    [36]

    Itikawa Y, Mason N 2005 J. Phys. Chem. Ref. Data 34 1Google Scholar

    [37]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process Polym. 16 e1900001

  • 图 1  大气压氩气等离子体射流的 (a)实验装置、(b)驱动电源输出电压波形、(c)发射光谱图和(d)吸收光谱图的示意图

    Figure 1.  Schematic diagram of the (a) experimental device, (b) output voltage waveform of driving power, (c) emission spectrum, and (d) absorption spectrum of atmospheric pressure argon plasma jet.

    图 2  大气压氩气等离子体射流气体温度 (a)拟合示意图和(b)随驱动参数变化趋势

    Figure 2.  (a) Fitting diagram of the gas temperature of atmospheric pressure argon plasma jet and (b) the vibration trend with driving parameters.

    图 3  大气压氩气等离子体射流电子激发温度的(a)玻尔兹曼图解法示意图和(b)随驱动参数变化趋势

    Figure 3.  (a) Boltzmann diagram of the electron excitation temperature of atmospheric pressure argon plasma jet and (b) the vibration trend with driving parameters.

    图 4  大气压氩气等离子体射流电子密度的(a)拟合示意图和(b)随驱动参数变化趋势

    Figure 4.  (a) Fitting diagram of electron density of atmospheric pressure argon plasma jet and (b) variation trend with driving parameters.

    图 5  大气压氩气等离子体射流·OH粒子数密度随(a)驱动参数变化和(b)气体温度变化的趋势

    Figure 5.  The trend of ·OH particle number density of atmospheric pressure argon plasma jet variation with (a) driving parameters and (b) gas temperature.

    表 1  固定功率2 W时不同频率和脉冲调制占空比下的电压 (单位: kV)

    Table 1.  The voltage (unit: kV) at different frequencies and duty cycles under a constant power of 2 W.

    频率/kHz脉冲调制占空比
    100%70%50%30%
    711.013.014.516.4
    810.412.414.015.7
    99.911.913.515.1
    109.311.413.014.6
    118.811.012.513.9
    128.410.412.013.1
    137.99.711.011.9
    147.58.910.011.3
    DownLoad: CSV

    表 2  玻尔兹曼图解法计算电子激发温度用到的Ar原子谱线相关参数

    Table 2.  The relevant parameters of Ar atomic spectral lines used in calculating electron excitation temperature by Boltzmann diagram method.

    λji/nmEj/cm–1gjAji/(106 s–1)
    706.7107289.753.80
    727.3107496.431.83
    738.4107289.758.47
    750.4108722.2144.50
    751.5107054.3140.20
    763.5106237.5524.50
    772.4107496.4311.70
    794.8107131.7318.60
    800.6106237.554.90
    801.5105617.359.28
    826.5107496.4315.30
    DownLoad: CSV

    表 3  大气压氩气等离子体射流生成·OH的相关反应式

    Table 3.  The relevant generation pathways of ·OH in atmospheric pressure argon plasma jet.

    反应方程式反应系数编号文献
    Ar + e → Ar* + e$f\left( { {T_{\rm{e}}} } \right)$R1[34]
    Ar* + H2O → Ar + ·H +··OH$ 2.10 \times {10^{ - 10}} $R2[35]
    e + H2O → H2O+ + 2 e$f\left( { {T_{\rm{e}}} } \right)$R3[36]
    e + H2O+ → ·H +··OH$ 1.38 \times {10^{ - 8}} $R4[35]
    e + H2O → e + ·H +··OH$f\left( { {T_{\rm{e}}} } \right)$R5[37]
    e + H2O → 2 e + H+ +··OH$f\left( { {T_{\rm{e}}} } \right)$R6[36]
    DownLoad: CSV
  • [1]

    Fallon M, Kennedy S, Kumar S, Daniels S, Humphreys H 2021 Plasma Med. 11 15

    [2]

    Wang T, Wang J H, Wang S Q, lv L, Li M, Shi L P 2021 Appl. Surf. Sci. 570 151258Google Scholar

    [3]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Wang R X, Xia Z C, Kong X H, Xue S, Wang H Y 2022 Surf. Coat. Technol. 437 128365Google Scholar

    [6]

    Shimizu T, Ikehara Y 2017 J. Phys. D: Appl. Phys. 50 503001Google Scholar

    [7]

    Huang Y M, Chang W C, Hsu C L 2021 Food Res. Int. 141 110108Google Scholar

    [8]

    Lu X P, Keudar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R 138 36Google Scholar

    [9]

    Schweigert I, Zakrevsky D, Milakhina E, Gugin P, Biryukov M, Patrakova E, Koval O 2022 Plasma Phys. Control. Fusion 64 044015Google Scholar

    [10]

    Pang B L, Liu Z J, Wang S T, Gao Y T, Zhang H Y, Zhang F, Tantai X M, Xu D H, Liu D X, Kong M G 2021 J. Appl. Phys. 130 153301Google Scholar

    [11]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [12]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [13]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ Microbiol. 84 e00726

    [14]

    Xiong Q, Lu X, Ostrikov K, Jiang Z Y 2009 Phys. Plasmas 16 043505Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Gott R P, Xu K G 2019 IEEE Trans. Plasma Sci. 47 4988Google Scholar

    [17]

    Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q Y, Zhang J L, Wen X Q 2012 Thin Solid Films 521 265Google Scholar

    [18]

    Moon S Y, Kim D B, Gweon B, Choe W 2008 Appl. Phys. Lett. 93 2215006

    [19]

    Long Y X, Li H X, Meng X S, Li J, Xiang Z C 2018 Mod. Phys. Lett. B 32 1850315

    [20]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [23]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [24]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [25]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [26]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 物理学报 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [27]

    Yuan H, Feng J, Yang D Z, Zhou X F, Liang J P, Zhang L, Zhao Z L, Wang W C 2020 J. Appl. Phys. 128 093303Google Scholar

    [28]

    王伟, 王永刚, 吴忠航, 饶俊峰, 姜松, 李孜 2023 光谱学与光谱分析 43 455Google Scholar

    Wang W, Wang Y G, WU Z H, Rao J F, Jiang S, Li Z 2023 Spectrosc. Spectral Anal. 43 455Google Scholar

    [29]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [30]

    Tu X, Cheron B G, Yan J H, Cen K F 2007 Plasma Sources Sci. Technol. 16 803Google Scholar

    [31]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D:Appl. Phys. 55 265202Google Scholar

    [32]

    Bruggeman P, Schram D, Gonzalez M 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar

    [33]

    Belostotskiy S G, Ouk T, Donnelly V M 2010 J. Appl. Phys. 107 05330

    [34]

    Zhou X F, Wang W C, Yang D Z, Liang J P, Zhao Z L, Yuan H 2019 Plasma Process Polym. 16 e1800124Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J Phys. D:Appl. Phys. 46 275201Google Scholar

    [36]

    Itikawa Y, Mason N 2005 J. Phys. Chem. Ref. Data 34 1Google Scholar

    [37]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process Polym. 16 e1900001

  • [1] Shen Yuan-Yi, Lei Peng, Wang Xin-Bing, Zuo Du-Luo. Ar-Kr resonance energy transfer in He/Ar/Kr optically pumped rare gas laser medium. Acta Physica Sinica, 2023, 72(19): 195201. doi: 10.7498/aps.72.20230956
    [2] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] Liu Guo-Rong, Zhu Wei-Jun, Chu Run-Tong, Wang Wei, Yuan Ping, An Ting-Ting, Wan Rui-Bin, Sun Dui-Xiong, Ma Yun-Yun, Guo Zhi-Yan. Diagnosis of lightning return stroke channel temperature according to different band spectra. Acta Physica Sinica, 2022, 71(10): 109201. doi: 10.7498/aps.71.20211673
    [4] Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun. Effect of flow rate of shielding gas on distribution of particles in coaxial double-tube helium atmospheric pressure plasma jet. Acta Physica Sinica, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [5] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [6] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [7] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [8] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [9] Guo Heng, Su Yun-Bo, Li He-Ping, Zeng Shi, Nie Qiu-Yue, Li Zhan-Xian, Li Zhi-Hui. Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments. Acta Physica Sinica, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [10] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [11] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [12] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [13] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [14] Huang Jun, Chen Wei, Li Hui, Wang Peng-Ye, Yang Si-Ze. Inactivation of Hela cancer cells by an atmospheric pressure cold plasma jet. Acta Physica Sinica, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [15] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [17] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [18] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [19] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] Yan Jian-Hua, Tu Xin, Ma Zeng-Yi, Pan Xin-Chao, Cen Ke-Fa, Cheron Bruno. Characterization of DC argon plasma jet at atmospheric pressure. Acta Physica Sinica, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
Metrics
  • Abstract views:  3010
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2023
  • Accepted Date:  16 March 2023
  • Available Online:  27 March 2023
  • Published Online:  05 June 2023

/

返回文章
返回