-
AlGaN/GaN heterojunction epitaxies with wide bandgap, high critical electric field as well as high density and high mobility two-dimensional electron gas have shown great potential applications in the next-generation high-power and high-frequency devices. Especially, with the development of Si-based GaN epitaxial technique with big size, GaN devices with low cost also show great advantage in consumer electronics. In order to improve the rectification efficiency of AlGaN/GaN Schottky barrier diode (SBD), low leakage current and low turn-on voltage are important. The GaN Schottky barrier diode with low work-function metal as anode is found to be very effective to reduce turn-on voltage. However, the low Schottky barrier height makes the Schottky interface sensitive to damage to groove surface, which leads to a high leakage current. In this work, a novel wet-etching technique with thermal oxygen oxidation and KOH corrosion is used to prepare the anode groove, and the surface roughness of groove decreases from 0.57 to 0.23 nm, compared with that of the dry-etching surface of groove. Meanwhile, the leakage current is suppressed from 1.5 × 10–6 to 2.6 × 10–7 A/mm. Benefiting from the great corrosion selectively of hot KOH solution to AlGaN barrier layer and GaN channel layer after thermal oxygen oxidation, the spikes of the edge of groove region caused by the nonuniform distribution of plasma in the cavity is improved, and the breakdown voltage of the fabricated AlGaN/GaN SBDs is raised from –1.28 to –1.73 kV.
-
Keywords:
- AlGaN/GaN /
- Schottky barrier diode /
- low leakage current /
- high breakdown voltage
[1] Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H 2008 Appl. Phys. Express 1 011105Google Scholar
[2] Guo Z B, Hitchcock C, Wetzel C, Karlicek R F, Jr, Piao G X, Yano Y, Koseki S, Tabuchi T, Matsumoto K, Bulsara M, Chow T P 2019 IEEE Electr. Device L. 40 1736Google Scholar
[3] Liu L, Wang J, Wang H Y, Ren N, Guo Q, Sheng K 2022 IEEE Electr. Device L. 43 104Google Scholar
[4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 70 116102
Rui C, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102
[5] Hu J, Stoffels S, Zhao M, Tallarico A N, Rossetto I, Meneghini M, Kang X W, Bakeroot B, Marcon D, Kaczer B, Decoutere S, Groeseneken G 2017 IEEE Electron Dev. Lett. 38 371Google Scholar
[6] Xu W Z, Zhou F, Liu Q, Ren F F, Zhou D, Chen D J, Zhang R, Zheng Y D, Lu H 2021 IEEE Electron Dev. Lett. 42 1743Google Scholar
[7] Li X D, Geens K, Guo W M, You S Z, Zhao M, Fahle D, Odnoblyudov V, Groeseneken G, Decoutere S 2019 IEEE Electron Dev. Lett. 40 1499Google Scholar
[8] Nela L, Kampitsis G, Ma J, Matioli E 2020 IEEE Electron Dev. Lett. 41 99Google Scholar
[9] Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H L G 2015 IEEE Electron Dev. Lett. 36 375Google Scholar
[10] Liu C, Khadar R A, Matioli E 2018 IEEE Electron Dev. Lett. 39 71Google Scholar
[11] Zhang Y H, Sun M, Wong H Y, Lin Y X, Srivastava P, Hatem C, Azize M, Piedra D, Yu L L, Sumitomo T, Braga N D A, Mickevicius R V, Palacios T 2015 IEEE Trans. Electron Dev. 62 2155Google Scholar
[12] Zhang T, Zhang J C, Zhou H, Wang Y, Chen T S, Zhang K, Zhang Y C, Dang K, Bian Z K, Zhang J F, Xu S R, Duan X L, Ning J, Hao Y 2019 IEEE Electron Dev. Lett. 40 1583Google Scholar
[13] Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Dev. 68 2661Google Scholar
[14] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 158503
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 158503
[15] Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Dev. Lett. 37 70Google Scholar
[16] Xu R, Chen P, Liu M H, Zhou J, Li Y M, Cheng K, Liu B, Chen D J, Xie Z L, Zhang R, Zheng Y D 2021 IEEE Electron Dev. Lett. 42 208Google Scholar
[17] Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Dev. Lett. 36 660Google Scholar
[18] Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Dev. Lett. 38 1425Google Scholar
[19] Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 997Google Scholar
[20] Lei J C, Wei J, Tang G F, Zhang Z F, Qian Q K, Zheng Z Y, Hua M Y, Chen K J 2018 IEEE Electron Dev. Lett. 39 260Google Scholar
[21] Ma J, Matioli E 2017 IEEE Electron Dev. Lett. 38 83Google Scholar
[22] Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar
[23] Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 7
[24] Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2013 IEEE Electron Dev. Lett. 34 11
[25] Xu Z, Wang J Y, Liu J Q, Jin C Y, Cai Y, Yang Z C, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C, Hao Y 2014 IEEE Electron Dev. Lett. 35 12Google Scholar
[26] Carin R, Deville J P, Werckmann J 1990 Sur. Interface Anal. 16 65Google Scholar
[27] Bian Z K, Zhang J C, Zhao S L, Zhang Y C, Duan X L, Chen J B, Ning J, Hao Y 2020 IEEE Electron Dev. Lett. 41 10
-
-
[1] Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H 2008 Appl. Phys. Express 1 011105Google Scholar
[2] Guo Z B, Hitchcock C, Wetzel C, Karlicek R F, Jr, Piao G X, Yano Y, Koseki S, Tabuchi T, Matsumoto K, Bulsara M, Chow T P 2019 IEEE Electr. Device L. 40 1736Google Scholar
[3] Liu L, Wang J, Wang H Y, Ren N, Guo Q, Sheng K 2022 IEEE Electr. Device L. 43 104Google Scholar
[4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 70 116102
Rui C, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102
[5] Hu J, Stoffels S, Zhao M, Tallarico A N, Rossetto I, Meneghini M, Kang X W, Bakeroot B, Marcon D, Kaczer B, Decoutere S, Groeseneken G 2017 IEEE Electron Dev. Lett. 38 371Google Scholar
[6] Xu W Z, Zhou F, Liu Q, Ren F F, Zhou D, Chen D J, Zhang R, Zheng Y D, Lu H 2021 IEEE Electron Dev. Lett. 42 1743Google Scholar
[7] Li X D, Geens K, Guo W M, You S Z, Zhao M, Fahle D, Odnoblyudov V, Groeseneken G, Decoutere S 2019 IEEE Electron Dev. Lett. 40 1499Google Scholar
[8] Nela L, Kampitsis G, Ma J, Matioli E 2020 IEEE Electron Dev. Lett. 41 99Google Scholar
[9] Zhu M D, Song B, Qi M, Hu Z Y, Nomoto K, Yan X D, Cao Y, Johnson W, Kohn E, Jena D, Xing H L G 2015 IEEE Electron Dev. Lett. 36 375Google Scholar
[10] Liu C, Khadar R A, Matioli E 2018 IEEE Electron Dev. Lett. 39 71Google Scholar
[11] Zhang Y H, Sun M, Wong H Y, Lin Y X, Srivastava P, Hatem C, Azize M, Piedra D, Yu L L, Sumitomo T, Braga N D A, Mickevicius R V, Palacios T 2015 IEEE Trans. Electron Dev. 62 2155Google Scholar
[12] Zhang T, Zhang J C, Zhou H, Wang Y, Chen T S, Zhang K, Zhang Y C, Dang K, Bian Z K, Zhang J F, Xu S R, Duan X L, Ning J, Hao Y 2019 IEEE Electron Dev. Lett. 40 1583Google Scholar
[13] Zhang T, Wang Y, Zhang Y N, Lv Y G, Ning J, Zhang Y C, Zhou H, Duan X L, Zhang J C, Hao Y 2021 IEEE Trans. Electron Dev. 68 2661Google Scholar
[14] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 158503
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 158503
[15] Tsou C W, Wei K P, Lian Y W, Hsu S S H 2016 IEEE Electron Dev. Lett. 37 70Google Scholar
[16] Xu R, Chen P, Liu M H, Zhou J, Li Y M, Cheng K, Liu B, Chen D J, Xie Z L, Zhang R, Zheng Y D 2021 IEEE Electron Dev. Lett. 42 208Google Scholar
[17] Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Dev. Lett. 36 660Google Scholar
[18] Gao J N, Wang M J, Yin R Y, Liu S F, Wen C P, Wang J Y, Wu W G, Hao Y L, Jin Y F, Shen B 2017 IEEE Electron Dev. Lett. 38 1425Google Scholar
[19] Hu J, Stoffels S, Lenci S, Bakeroot B, Jaeger B D, Hove M V, Ronchi N, Venegas R, Liang H, Zhao M, Groeseneken G, Decoutere S 2016 IEEE Trans. Electron Dev. 63 997Google Scholar
[20] Lei J C, Wei J, Tang G F, Zhang Z F, Qian Q K, Zheng Z Y, Hua M Y, Chen K J 2018 IEEE Electron Dev. Lett. 39 260Google Scholar
[21] Ma J, Matioli E 2017 IEEE Electron Dev. Lett. 38 83Google Scholar
[22] Ma J, Matioli E 2018 Appl. Phys. Lett. 112 052101Google Scholar
[23] Xu Z, Wang J Y, Liu Y, Cai J B, Liu J Q, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C 2013 IEEE Electron Dev. Lett. 34 7
[24] Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2013 IEEE Electron Dev. Lett. 34 11
[25] Xu Z, Wang J Y, Liu J Q, Jin C Y, Cai Y, Yang Z C, Wang M J, Yu M, Xie B, Wu W G, Ma X H, Zhang J C, Hao Y 2014 IEEE Electron Dev. Lett. 35 12Google Scholar
[26] Carin R, Deville J P, Werckmann J 1990 Sur. Interface Anal. 16 65Google Scholar
[27] Bian Z K, Zhang J C, Zhao S L, Zhang Y C, Duan X L, Chen J B, Ning J, Hao Y 2020 IEEE Electron Dev. Lett. 41 10
Catalog
Metrics
- Abstract views: 2824
- PDF Downloads: 76
- Cited By: 0