-
Warm dense matter (WDM), a state of matter which lies at the frontiers between condensed matter and plasma, is one of the main research objects of high energy density physics (HEDP). Compared to the isolated atom, the electron structure of WDM will change because of the influence of density and temperature effect. Both the accurate theoretical represent and the accurate experimental study of WDM electron structure are challenging, as it is strongly coupled and partially degenerated. In this paper, an experimental method for studying the ionization distribution of warm dense matter based on x-ray fluorescence spectroscopy is developed. In the experiment, warm dense titanium with several tens eV and near solid density is created by a simultaneous drive from high energy xray heating and shock compression in a special designed hohlraum. Then, using the characteristic line spectrum emitted by the laser irradiation on pump material (Vanadium) as pump source, the titanium emits fluorescence. The x-ray fluorescence spectroscopy of titanium with different states (cold sample, 1.8-4.5 g/cm3 and 1-25 eV) is diagnosed by changing the experimental strategy. The experimental results indicate that the line profiles of Kα and Kβ fluorescence spectrum of the heated sample change obviously relative to that of the cold sample. Associating a theoretical calculation from two-step Hartree-Fock-Slater (TSHFS) method, the reason for the variation of the line profile is the change of ionization distribution mainly caused by temperature rise. The future work will focus on optimizing the experimental method of x-ray fluorescence spectroscopy, such as improving the spectrum resolution, characterizing the temperature and density experimentally, obtaining a set of ionization distribution data, and then study the influence of dense environment on electronic structure.
-
Keywords:
- warm dense matter /
- electron structure /
- ionization distribution /
- x-ray fluorescence spectrum
-
[1] Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122
[2] Lindl J D 1995 Phys. Plasmas 2 3933
[3] Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958
[4] Mazévet S, Zerah G 2008 Phys. Rev. Lett. 101 155001
[5] Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102 (in Chinese)[金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102]
[6] Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114
[7] Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001
[8] Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002
[9] Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995
[10] DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623
[11] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703
[12] Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006
[13] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003
[14] Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001
[15] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39
[16] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301
[17] Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204
[18] Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002
[19] Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.:Conf. Ser. 112 042024
[20] Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001
[21] Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060
[22] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704
[23] Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133
[24] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475
[25] Son S-K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004
[26] Lin C L 2019 Phys. Plasmas 26 122707
Metrics
- Abstract views: 1332
- PDF Downloads: 14
- Cited By: 0