-
In view of the fact that high-frequency electromagnetic waves mainly enter buildings through windows and glass doors, switchable optically-transparent shielding with broad stopband is increasingly needed. Herein, a novel design for a switchable and optically transparent frequency selective surface (FSS) with ultrawide-stopband is presented in this study. The structure consists of a polymethyl methacrylate (PMMA) layer sandwiched between polydimethylsiloxane (PDMS) layers which contain liquid metal microchannels arranged in an orthogonal Ω-shaped configuration. The mobility of the liquid metal can switch the FSS response from an all-pass to an ultrawide bandstop behavior. The proposed FSS achieves a rejection bandwidth of 18.1 GHz, covering P, L, S, C, X and Ku bands, while maintaining a transparency of 81% and high angular stability up to 80°, regardless of polarization. Furthermore, the mechanism behind the ultrawide stopband and high angular stability is explored through an analysis of reflection and absorption for both TE polarization and TM polarization. Experimental validation under both normal and oblique incidence demonstrates the ultrawide-stopband performance of the fabricated FSS.
-
Keywords:
- electromagnetic shielding /
- frequency selective surface /
- liquid metal /
- optically transparent /
- switchable
[1] Munk B A, 2000 Frequency Selective Surfaces: Theory and Design (New York, USA: Wiley) p63
[2] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍 2024 物理学报 73 024201Google Scholar
Wang D J, Sun Z H, Zhang Y, Tang L, Yan L P 2024 Acta Phys. Sin. 73 024201Google Scholar
[3] 赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar
Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar
[4] Liao W J, Zhang W Y, Hou Y C, Chen S T, Kuo C Y, Chou M 2019 IEEE Antennas Wirel. Propag. Lett. 18 2076Google Scholar
[5] 冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar
Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar
[6] Chiu C N, Chang Y C, Hsieh H C, Chen C H 2010 IEEE Trans. Electromagn. Compat. 52 56Google Scholar
[7] Li D, Li T W, Li E P, Zhang Y J 2018 IEEE Trans. Electromagn. Compat. 60 768Google Scholar
[8] Nauman M, Saleem R, Rashid A K, Shafique M F 2016 IEEE Trans. Electromagn. Compat. 58 419Google Scholar
[9] Yin W Y, Zhang H, Zhong T, Min X L 2018 IEEE Trans. Electromagn. Compat. 60 2057Google Scholar
[10] Chaluvadi M, Kanth V K, Thomas K G 2020 IEEE Trans. Electromagn. Compat. 62 1068Google Scholar
[11] Yong W Y, Rahim S K A, Himdi M, Seman F C, Suong D L, Ramli M R, Elmobarak H A 2018 IEEE Access 6 11657Google Scholar
[12] Chaudhary V, Panwar R 2021 IEEE Trans. Magn. 57 2800710Google Scholar
[13] Abirami B S, Sundarsingh E F, Ramalingam V S 2020 IEEE Trans. Electromagn. Compat. 62 2643Google Scholar
[14] Sanjeev Y, Prakash J C , Mohan S M 2019 IEEE Trans. Electromagn. Compat. 61 887Google Scholar
[15] Yang Y, Li W, Salama K N, Shamim A 2021 IEEE Trans. Antennas Propag. 69 2779Google Scholar
[16] Lei Q Y, Luo Z L, Zheng X Y, Lu N, Zhang Y M, Huang J F, Yang L, Gao S M, Liang Y Y, He S L 2023 Opt. Mater. Express 13 469Google Scholar
[17] Guo Q X, Peng Q Y, Qu M J, Su J X, Li Z R 2022 Opt. Express 30 7793Google Scholar
[18] Zhang Y Q, Dong H X, Mou N L, Chen L L, Li R H, Zhang L 2020 Opt. Express 28 26836Google Scholar
[19] Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar
[20] Dewani A A, O’Keefe S G, Thiel D V, Galehdar A 2018 IEEE Trans. Antennas Propag. 66 790Google Scholar
[21] Habib S, Kiani G I, Butt M F U 2019 IEEE Access 7 65075Google Scholar
[22] Xu S J, Li Y, Ahmed M, Fang L D, Jin N, Li B H, Huo S Y, Lei X Y, Sun Z, Yu H Y, Li E P 2021 IEEE Access 9 161854Google Scholar
[23] Syed I S, Ranga Y, Matekovits L, Esselle K P, Hay S 2014 IEEE Trans. Electromagn. Compat. 56 1404Google Scholar
[24] Katoch K, Jaglan N, Gupta S D 2021 IEEE Trans. Electromagn. Compat. 63 1423Google Scholar
[25] Li P, Liu W, Ren Z, Meng W, Song L 2022 IEEE Access 10 9446Google Scholar
[26] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山 2020 物理学报 69 204101Google Scholar
Zhou S H, Fang X Y, Li M M, Yu Y F, Chen R S 2020 Acta Phys. Sin. 69 204101Google Scholar
[27] Lei B J, Zamora A, Chun T F, Ohta A T, Shiroma W A. 2011 IEEE Microw. Wirel. Compon. Lett. 21 465Google Scholar
[28] Ghosh S, Srivastava K V 2018 IEEE Trans. Electromagn. Compat. 60 166Google Scholar
[29] Saikia M, Srivastava K V, Ramakrishna S A 2020 IEEE Trans. Antennas Propag. 68 2937Google Scholar
[30] Sivasamy R, Moorthy B, Kanagasabai M, Samsingh V R, Alsath M G N 2018 IEEE Trans. Electromagn. Compat. 60 280Google Scholar
[31] 韩鹏, 王军, 王甲富, 等 2016 物理学报 65 197701Google Scholar
Han P, Wang J, Wang J F, et al. 2016 Acta Phys. Sin. 65 197701Google Scholar
[32] Ghosh S, Lim S 2018 IEEE Trans. Antennas Propag. 66 4953Google Scholar
[33] Wang C R, Yan L P, Sun Z H, Yang Y, Zhao X 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, September 1–4, 2022 p669
[34] Sheikh S 2016 IEEE Antennas Wirel. Propag. Lett. 15 1661Google Scholar
[35] Ghosh S, Lim S 2018 IEEE Trans. Microw. Theory Tech. 66 3857Google Scholar
[36] Yan L P, Xu L L, Gao R X K, Zhang J H, Yang X P, Zhao X 2022 IEEE Trans. Electromagn. Compat. 64 251Google Scholar
-
图 5 (a)单层网格结构与文中FSS结构的ECM分析; (b)文中FSS的ECM; (c) ECM与全波分析传输系数比较
Figure 5. (a) Equivalent circuit model (ECM) analysis of the single layer grid structure and the proposed three-layer FSS structure; (b) summarized ECM of the proposed FSS; (c) comparison of transmission coefficient between ECM and full-wave analysis.
图 8 制造过程概览 (a) 金属模具; (b) PDMS混合物; (c)将溶液倒入模具; (d) 脱模; (e) 向微通道注入液态金属(EGaIn); (f) 透过FSS结构看到的美丽风景
Figure 8. Overview of the fabrication process: (a) Metal mold; (b) the PDMS mixture; (c) pull the solution into the mold; (d) demold; (e) inject liquid metal (EGaIn) into the microchannel; (f) beautiful scenery seen through the proposed FSS.
表 1 FSS单元结构所含材料的电磁特性参数
Table 1. Electromagnetic characteristics of the materials contained in the FSS unit.
电磁特性参数 材料名 值 相对介电常数 PDMS 3 – j0.195 PMMA 2.55 – j0.0051 EGaIn 1 相对磁导率 PDMS 1 PMMA 1 EGaIn 1 电导率/(S·m–1) EGaIn 3.4 × 106 表 2 FSS单元结构参数
Table 2. Value of parameters in the unit cell.
参量 d s w h hPDMS hPMMA p 值/mm 4 2 0.5 2 2.7 1.5 10 表 3 TE极化参数值
Table 3. Parameters value for TE polarization.
入射角
/(°)频率/GHz S11/dB S21/dB Zin/Ω Z0/Ω Re Im 80 10.5 –15.51 –18.23 2848.8 –565.8 2171.1 80 11.7 –20.79 –18.95 1844.8 –119.0 2171.1 60 12 –14.9 –17.01 765.1 –290.3 754 表 4 与文献中相关工作的 FSS结构性能对比
Table 4. Performance comparison of our design with what of reported FSSs.
文献 透明度/% 可开关或可调谐性能 10 dB 屏蔽带宽/GHz 角度稳定性/(°) [21] N N 3.0—12.0 60 [22] N N 7.34—15.0 45 [15] 81.6 N 0.71—1.25
1.73—2.1660 [16] 84.5 N 8.0—12.0 NM [27] N 汞和油的体积调谐 4.08—16.96 NM [28] N 变容二极管调谐 0.54—2.5 60 [25] N EGaIn注入不同层调谐 <4.5 (底层结构)
< 12.2 (顶层结构)NM [32] N EGaIn注入控制全通到带阻 1.9—3.1 (TM 极化)
3.2—4.2 (TE极化)45
60本文设计 81 EGaIn注入控制全通到阻带 < 18.1 80 注: N表示不支持该功能; NM表示未提及 -
[1] Munk B A, 2000 Frequency Selective Surfaces: Theory and Design (New York, USA: Wiley) p63
[2] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍 2024 物理学报 73 024201Google Scholar
Wang D J, Sun Z H, Zhang Y, Tang L, Yan L P 2024 Acta Phys. Sin. 73 024201Google Scholar
[3] 赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar
Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar
[4] Liao W J, Zhang W Y, Hou Y C, Chen S T, Kuo C Y, Chou M 2019 IEEE Antennas Wirel. Propag. Lett. 18 2076Google Scholar
[5] 冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar
Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar
[6] Chiu C N, Chang Y C, Hsieh H C, Chen C H 2010 IEEE Trans. Electromagn. Compat. 52 56Google Scholar
[7] Li D, Li T W, Li E P, Zhang Y J 2018 IEEE Trans. Electromagn. Compat. 60 768Google Scholar
[8] Nauman M, Saleem R, Rashid A K, Shafique M F 2016 IEEE Trans. Electromagn. Compat. 58 419Google Scholar
[9] Yin W Y, Zhang H, Zhong T, Min X L 2018 IEEE Trans. Electromagn. Compat. 60 2057Google Scholar
[10] Chaluvadi M, Kanth V K, Thomas K G 2020 IEEE Trans. Electromagn. Compat. 62 1068Google Scholar
[11] Yong W Y, Rahim S K A, Himdi M, Seman F C, Suong D L, Ramli M R, Elmobarak H A 2018 IEEE Access 6 11657Google Scholar
[12] Chaudhary V, Panwar R 2021 IEEE Trans. Magn. 57 2800710Google Scholar
[13] Abirami B S, Sundarsingh E F, Ramalingam V S 2020 IEEE Trans. Electromagn. Compat. 62 2643Google Scholar
[14] Sanjeev Y, Prakash J C , Mohan S M 2019 IEEE Trans. Electromagn. Compat. 61 887Google Scholar
[15] Yang Y, Li W, Salama K N, Shamim A 2021 IEEE Trans. Antennas Propag. 69 2779Google Scholar
[16] Lei Q Y, Luo Z L, Zheng X Y, Lu N, Zhang Y M, Huang J F, Yang L, Gao S M, Liang Y Y, He S L 2023 Opt. Mater. Express 13 469Google Scholar
[17] Guo Q X, Peng Q Y, Qu M J, Su J X, Li Z R 2022 Opt. Express 30 7793Google Scholar
[18] Zhang Y Q, Dong H X, Mou N L, Chen L L, Li R H, Zhang L 2020 Opt. Express 28 26836Google Scholar
[19] Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar
[20] Dewani A A, O’Keefe S G, Thiel D V, Galehdar A 2018 IEEE Trans. Antennas Propag. 66 790Google Scholar
[21] Habib S, Kiani G I, Butt M F U 2019 IEEE Access 7 65075Google Scholar
[22] Xu S J, Li Y, Ahmed M, Fang L D, Jin N, Li B H, Huo S Y, Lei X Y, Sun Z, Yu H Y, Li E P 2021 IEEE Access 9 161854Google Scholar
[23] Syed I S, Ranga Y, Matekovits L, Esselle K P, Hay S 2014 IEEE Trans. Electromagn. Compat. 56 1404Google Scholar
[24] Katoch K, Jaglan N, Gupta S D 2021 IEEE Trans. Electromagn. Compat. 63 1423Google Scholar
[25] Li P, Liu W, Ren Z, Meng W, Song L 2022 IEEE Access 10 9446Google Scholar
[26] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山 2020 物理学报 69 204101Google Scholar
Zhou S H, Fang X Y, Li M M, Yu Y F, Chen R S 2020 Acta Phys. Sin. 69 204101Google Scholar
[27] Lei B J, Zamora A, Chun T F, Ohta A T, Shiroma W A. 2011 IEEE Microw. Wirel. Compon. Lett. 21 465Google Scholar
[28] Ghosh S, Srivastava K V 2018 IEEE Trans. Electromagn. Compat. 60 166Google Scholar
[29] Saikia M, Srivastava K V, Ramakrishna S A 2020 IEEE Trans. Antennas Propag. 68 2937Google Scholar
[30] Sivasamy R, Moorthy B, Kanagasabai M, Samsingh V R, Alsath M G N 2018 IEEE Trans. Electromagn. Compat. 60 280Google Scholar
[31] 韩鹏, 王军, 王甲富, 等 2016 物理学报 65 197701Google Scholar
Han P, Wang J, Wang J F, et al. 2016 Acta Phys. Sin. 65 197701Google Scholar
[32] Ghosh S, Lim S 2018 IEEE Trans. Antennas Propag. 66 4953Google Scholar
[33] Wang C R, Yan L P, Sun Z H, Yang Y, Zhao X 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, September 1–4, 2022 p669
[34] Sheikh S 2016 IEEE Antennas Wirel. Propag. Lett. 15 1661Google Scholar
[35] Ghosh S, Lim S 2018 IEEE Trans. Microw. Theory Tech. 66 3857Google Scholar
[36] Yan L P, Xu L L, Gao R X K, Zhang J H, Yang X P, Zhao X 2022 IEEE Trans. Electromagn. Compat. 64 251Google Scholar
Catalog
Metrics
- Abstract views: 2108
- PDF Downloads: 130
- Cited By: 0