Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of high-performance sub-5-nm monolayer SnS field-effect transistors

Guo Ying Pan Feng Yao Bin-Bin Meng Hao Lü Jin

Citation:

First principles study of high-performance sub-5-nm monolayer SnS field-effect transistors

Guo Ying, Pan Feng, Yao Bin-Bin, Meng Hao, Lü Jin
cstr: 32037.14.aps.73.20241004
PDF
HTML
Get Citation
  • Currently, Si-based field-effect transistors (FET) are approaching their physical limit and challenging Moore's law due to their short-channel effect, and further reducing their gate length to the sub-10 nm is extremely difficult. Two-dimensional (2D) layered semiconductors with atom-scale uniform thickness and no dangling bonds on the interface are considered potential channel materials to support further miniaturization and integrated electronics. Wu et al. [Wu F, et al. 2022 Nature 603 259] successfully fabricated an FET with gate length less than 1 nm by using atomically thin molybdenum disulfide with excellent device performance. This breakthrough has greatly encouraged further theoretical predictions regarding the performance of 2D devices. Additionally, 2D SnS has high carrier mobility, anisotropic electronic properties, and is stable under ambient condition, which is conducive to advanced applications in 2D semiconductor technology. Herein, we explore the quantum transport properties of sub-5 nm monolayer (ML) SnS FET by using first-principles quantum transport simulation. Considering the anisotropic electronic SnS, the double-gated-two-probe device model is constructed along the armchair direction and the zigzag direction of ML SnS. After testing five kinds of doping concentrations, a doping concentration of 5×1013 cm–2 is the best one for SnS FET. We also use the underlaps (ULs) with lengths of 0, 2, and 4 nm to improve the device performance. On-state current (Ion) is an important parameter for evaluating the transition speed of a logic device. A higher Ion of a device can help to increase the switching speed of high-performance (HP) servers. The main conclusions are drawn as follows.1) Ion values of the n-type 2 nm (UL = 4 armchair), 3 nm (UL = 2), 4 nm (UL = 3), 5 nm (UL = 0) and the p-type 1 nm (UL = 2 zigzag), 2 nm (UL = 2 zigzag), 3 nm (UL = 2, 4 zigzag), 4 nm (UL = 2, 4 zigzag), and 5 nm (UL = 0, armchair/zigzag) gate-length devices can meet the standards for HP applications in the next decade in the International Technology Roadmap for semiconductors (ITRS, 2013 version).2) Ion values of the n-type device along the armchair direction (31–2369 μA/μm) are larger than those in the zigzag direction (4.04–1943 μA/μm), while Ion values of the p-type along the zigzag direction (545–4119 μA/μm) are larger than those in the armchair direction (0.7–924 μA/μm). Therefore, the p-type ML GeSe MOSFETs have a predominantly anisotropic current.3) Ion value of the p-type 3 nm gate-length (UL = 0) device along the zigzag direction has the highest value 4119 μA/μm, which is 2.93 times larger than that in the same gate-length UL = 2 (1407 μA/μm). Hence, an overlong UL will weaken the performance of the device because the gate of the device cannot well control the UL region. Thus, a suitable length of UL for FET is very important.4) Remarkably, Ion values of the p-type devices (zigzag), even with a gate-length of 1 nm, can meet the requirements of HP applications in the ITRS for the next decade, with a value as high as 1934 μA/μm. To our knowledge, this is the best-performing device material reported at a gate length of 1 nm.5) Subthreshold swing (SS) evaluates the control ability of the gate in the subthreshold region. The better the gate control, the smaller the SS of the device is. The limit of SS for traditional FET is 60 mV/dec (at room temperature). Values of SS for ML SnS FET alone zigzag direction are less than those along the armchair direction because the leakage current is influenced by the effective mass.
      Corresponding author: Guo Ying, guosophia@163.com ; Lü Jin, jinglu@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. Z20230015, 12174238), the Natural Science Basic Research Project of Shaanxi Province, China (Grant No. 2022JM-051), and the Shaanxi University of Technology Talent Introduction Programm, China (Grant No. SLGRC202401).
    [1]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [2]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [3]

    Wang Y Y, Liu S Q, Li Q W, Quhe R, Yang C, Guo Y, Zhang X Y, Pan Y Y, Li J S, Zhang H, Xu L, Shi B W, Tang H, Li Y, Yang J, Zhang Z Y, Xiao L, Pan F, Lu J 2021 Rep. Prog. Phys. 84 056501Google Scholar

    [4]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [5]

    https://irds.ieee.org/editions/2022

    [6]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C H, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [7]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [8]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [9]

    Xin C, Zheng J X, Su Y T, Li S K, Zhang B K, Feng Y C, Pan F 2016 J. Phys. Chem. C 120 22663Google Scholar

    [10]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2022 Adv. Sci. 10 2201842

    [11]

    Li S B, Xiao W J, Pan Y Y, Jie J S, Xin C, Zheng J X, Lu J, Pan F 2018 J. Phys. Chem. C 122 12322

    [12]

    Chang Y R, Nishimura T, Taniguchi T, Watanabe K, Nagashio K 2022 ACS Appl. Mater. Interfaces 14 19928Google Scholar

    [13]

    Sucharitakul S, Rajesh Kumar U, Sankar R, Chou F C, Chen Y T, Wang C H, He C, He R, Gao X P 2016 Nanoscale 8 19050Google Scholar

    [14]

    Dragoman M, Dinescu A, Avram A, Dragoman D, Vulpe S, Aldrigo M, Braniste T, Suman V, Rusu E, Tiginyanu I 2022 Nanotechnology 33 405207Google Scholar

    [15]

    Pandit A, Hamad B 2021 Appl. Surface Sci. 538 147911Google Scholar

    [16]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434Google Scholar

    [17]

    Zhao P D, Kiriya D, Azcatl A, Zhang C X, Tosun M, Liu Y S, Hettick M, Kang J S, McDonnell S, KC S, Guo J H, Cho K, Wallace R M, Javey A 2014 ACS Nano 8 10808Google Scholar

    [18]

    Fathipour S, Pandey P, Fullerton-Shirey S, Seabaugh A 2016 J. Appl. Phys. 120 234902Google Scholar

    [19]

    Quhe R, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [20]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100Google Scholar

    [21]

    Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M, Lodha S 2014 Appl. Phys. Lett. 105 113505Google Scholar

    [22]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [23]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [24]

    Pan Y Y, Wang Y Y, Ye M, Quhe R, Zhong H X, Song Z G, Peng X Y, Yu D P, Yang J B, Shi J J, Lu J 2016 Chem. Mater. 28 2100Google Scholar

    [25]

    Pan Y Y, Dan Y, Wang Y Y, Ye M, Zhang H, Quhe R, Zhang X Y, Li J Z, Guo W L, Yang L, Lu J 2017 ACS Appl. Mater. Interfaces 9 12694Google Scholar

    [26]

    Zhang X Y, Pan Y Y, Ye M, Quhe R, Wang Y Y, Guo Y, Zhang H, Dan Y, Song Z G, Li J Z, Yang J B, Guo W L, Lu J 2017 Nano Res. 11 707

    [27]

    Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A 2014 Nano Lett. 14 5733Google Scholar

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Guo Y, Pan F, Zhao G Y, Ren Y J, Yao B B, Li H, Lu J 2020 Nanoscale 12 15443Google Scholar

    [30]

    Guo Y, Zhao G Y, Pan F, Quhe R, Lu J 2022 J. Electron. Mater. 51 4824Google Scholar

  • 图 1  (a) ML SnS的最佳优化结构侧视和俯视图, 黑色虚线的矩形框为单胞结构; (b) ML SnS的能带结构图, 费米能级(蓝色虚线)能量为零, Γ-XΓ-Y分别表示armchair方向和zigzag方向; (c) ML SnS MOSFET器件的结构示意图

    Figure 1.  (a) Side and top view of the optimized ML SnS structure, the black dash rectangle represents the primitive cell; (b) band structure of the ML SnS, the blue dashed line indicates the Fermi level, and Γ-X and Γ-Y representing the armchair and zigzag directions, respectively; (c) schematic diagram of the ML SnS MOSFET.

    图 2  测试器件掺杂浓度的转移特性曲线, 不同源极和漏极掺杂电子/空穴(Ne (Nh))浓度下n型和p型5 nm栅长DG ML SnS MOSFET沿zigzag (a)和armchair (b)方向的转移特性曲线

    Figure 2.  Transfer characteristics of the n- and p-type 5 nm gate-length DG ML SnS MOSFET for different source and drain doping concentrations of electron/hole (Ne (Nh)) along the zigzag (a) and armchair (b) directions.

    图 3  n型和p型DG ML SnS MOSFET器件转移特性曲线 (a) 1—2 nm, (b) 3—5 nm栅极长沿armchair方向转移特性曲线; (c) 1—2 nm, (d) 3—5 nm栅极长沿zigzag方向的转移特性

    Figure 3.  Transfer characteristics curves of the n- and p-type DG ML SnS MOSFET: (a) 1–2 nm, (b) 3–5 nm gate-length along the armchair direction; (c) 1–2 nm, (d) 3–5 nm gate-length along the zigzag directions.

    图 4  亚5 nm的n型和p型DG ML SnS MOSFET开态电流(a), (b)和亚阈值摆幅(c), (d)与栅极长度的关系

    Figure 4.  On-state current (a), (b) and subthreshold swing (c), (d) of the sub-5 nm DG n-type and p-type DG ML SnS MOSFET as a function of the gate-length.

    图 5  亚5 nm的n型(a)和p型(b)DG ML SnS MOSFET的开态电流与栅极长度的关系

    Figure 5.  On-state current of the sub-5 nm n-type (a) and p-type (b) DG ML SnS MOSFET as a function of the Lg, the set of red and green lines indicate the armchair and zigzag directions, respectively.

    图 6  n型和p型MOSFET在HP标准下亚5 nm栅长下的开态电流与ML二维沟道材料有效质量的关系, 所有数据均采基于密度泛函理论的量子输运模拟计算

    Figure 6.  On-state current of n- and p-type MOSFET for high-performance applications at sub-5 nm gate-lengths versus the effective mass of ML two dimensional channel materials, all the data are calculated by ab initio quantum transport simulations.

    表 1  不同的测试掺杂浓度对应的器件开态电流

    Table 1.  Ion of the SnS MOSFET with different doping concentrations.

    Ne/Nh doping concentration/cm–2Ion (HP/LP)/(μA·μm–1)
    ZigzagArmchair
    n-typep-typen-typep-type
    1×101232.24/33.6945/40.9129.66/21.5531.82/35.72
    5×1012232.26/51.9310.69/95.35741.82/17.33185.95/32.23
    1×10131105.66/35.52756.83/105.06970.15/8.42379.27/42.5
    5×10131330.51/0.4252693.37/0.121216.66/0.061973.2/0.026
    8×10131207.55/0.082280.42/0.00131020.21/0.0074676.8/5.37
    DownLoad: CSV

    表 2  n型和p型DG ML SnS MOSFET器件开态电流、开关比和亚阈值摆幅与ITRS HP和LP标准(2023版)的比较

    Table 2.  Benchmark of the ballistic performances upper limit of the sub-5 nm DG ML SnS MOSFET (zigzag- and armchair-directed) for HP and LP applications against the ITRS requirements (2023 version).



    Lg/nm UL/nm SS/(mV·dec–1) Ion/(μA·μm–1) Ion/Ioff Ion/(μA·μm–1) Ion/Ioff
    HP 5.1 0 900 9.00×103 LP 295 5.9×106
    n-type p-type n-type p-type n-type p-type n-type p-type n-type p-type
    Armchair 1 0 843 719
    2 260 276 31 56 3.1×102 5.6×102
    4 120 122 407 209 4.07×103 2.09×103 2.06 6.34 4.12×104 1.27×105
    2 0 561 418 0.7 7.0×102
    2 212 172 41 319 4.1 3.19×103 0.007 0.0031 1.40×102 61.6
    4 101 90 938 285 9.38×103 2.85×103 45.7 50.83 9.14×105 1.02×106
    3 0 293 254 5.18 13 5.18×101 1.30×102
    2 118 101 1204 665 1.20×104 6.65×103 0.406 0.86 8.12×103 1.72×104
    4 0 189 241 226 292 2.26×103 2.92×103
    2 93 78 2369 817 2.37×104 8.17×103 110.58 92.08 2.21×106 1.84×106
    5 0 125 112 1113 924 1.11×104 9.24×103 0.1 0.03 2.0×103 6.00×102
    Zigzag 1 0 904 603
    2 259 96 72 1934 7.20×102 1.93×104 69.3 1.39×106
    4 107 85 390 545 3.90×103 5.45×103 10.04 79.2 2.01×105 1.58×106
    2 0 530 252
    2 147 101 509 1236 5.09×103 1.24×104 0.035 0.0021 7.0×102 42.8
    4 89 78 621 693 6.21×103 6.93×103 85.02 136.51 1.70×106 2.73×106
    3 0 233 89 4.04 4119 4.04×101 4.12×104 171.91 3.44×106
    2 117 66 1168 1407 1.17×104 1.41×104 7.73 516.18 1.55×105 1.03×107
    4 0 166 106 322 1648 3.22×103 1.65×104
    2 85 70 1843 1874 1.84×104 1.87×104 231.06 271.4 4.62×106 5.43×106
    5 0 118 78 1280 2463 1.28×104 2.46×104 0.67 0.13 1.34×104 2.6×103
    DownLoad: CSV
  • [1]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [2]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [3]

    Wang Y Y, Liu S Q, Li Q W, Quhe R, Yang C, Guo Y, Zhang X Y, Pan Y Y, Li J S, Zhang H, Xu L, Shi B W, Tang H, Li Y, Yang J, Zhang Z Y, Xiao L, Pan F, Lu J 2021 Rep. Prog. Phys. 84 056501Google Scholar

    [4]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [5]

    https://irds.ieee.org/editions/2022

    [6]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C H, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [7]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [8]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [9]

    Xin C, Zheng J X, Su Y T, Li S K, Zhang B K, Feng Y C, Pan F 2016 J. Phys. Chem. C 120 22663Google Scholar

    [10]

    Sarkar A S, Konidakis I, Gagaoudakis E, Maragkakis G M, Psilodimitrakopoulos S, Katerinopoulou D, Sygellou L, Deligeorgis G, Binas V, Oikonomou I M, Komninou P, Kiriakidis G, Kioseoglou G, Stratakis E 2022 Adv. Sci. 10 2201842

    [11]

    Li S B, Xiao W J, Pan Y Y, Jie J S, Xin C, Zheng J X, Lu J, Pan F 2018 J. Phys. Chem. C 122 12322

    [12]

    Chang Y R, Nishimura T, Taniguchi T, Watanabe K, Nagashio K 2022 ACS Appl. Mater. Interfaces 14 19928Google Scholar

    [13]

    Sucharitakul S, Rajesh Kumar U, Sankar R, Chou F C, Chen Y T, Wang C H, He C, He R, Gao X P 2016 Nanoscale 8 19050Google Scholar

    [14]

    Dragoman M, Dinescu A, Avram A, Dragoman D, Vulpe S, Aldrigo M, Braniste T, Suman V, Rusu E, Tiginyanu I 2022 Nanotechnology 33 405207Google Scholar

    [15]

    Pandit A, Hamad B 2021 Appl. Surface Sci. 538 147911Google Scholar

    [16]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434Google Scholar

    [17]

    Zhao P D, Kiriya D, Azcatl A, Zhang C X, Tosun M, Liu Y S, Hettick M, Kang J S, McDonnell S, KC S, Guo J H, Cho K, Wallace R M, Javey A 2014 ACS Nano 8 10808Google Scholar

    [18]

    Fathipour S, Pandey P, Fullerton-Shirey S, Seabaugh A 2016 J. Appl. Phys. 120 234902Google Scholar

    [19]

    Quhe R, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [20]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100Google Scholar

    [21]

    Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh M M, Lodha S 2014 Appl. Phys. Lett. 105 113505Google Scholar

    [22]

    Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [23]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [24]

    Pan Y Y, Wang Y Y, Ye M, Quhe R, Zhong H X, Song Z G, Peng X Y, Yu D P, Yang J B, Shi J J, Lu J 2016 Chem. Mater. 28 2100Google Scholar

    [25]

    Pan Y Y, Dan Y, Wang Y Y, Ye M, Zhang H, Quhe R, Zhang X Y, Li J Z, Guo W L, Yang L, Lu J 2017 ACS Appl. Mater. Interfaces 9 12694Google Scholar

    [26]

    Zhang X Y, Pan Y Y, Ye M, Quhe R, Wang Y Y, Guo Y, Zhang H, Dan Y, Song Z G, Li J Z, Yang J B, Guo W L, Lu J 2017 Nano Res. 11 707

    [27]

    Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A 2014 Nano Lett. 14 5733Google Scholar

    [28]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [29]

    Guo Y, Pan F, Zhao G Y, Ren Y J, Yao B B, Li H, Lu J 2020 Nanoscale 12 15443Google Scholar

    [30]

    Guo Y, Zhao G Y, Pan F, Quhe R, Lu J 2022 J. Electron. Mater. 51 4824Google Scholar

  • [1] Zhang Wei-Xi, Li Yong, Tian Chang-Hai, She Yan-Chao. Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies. Acta Physica Sinica, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [2] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [3] Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui. Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Acta Physica Sinica, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [4] Shi Lei, Feng Shi-Wei, Shi Bang-Bing, Yan Xin, Zhang Ya-Min. Degradation induced by voltage and current for AlGaN/GaN high-electron mobility transistor under on-state stress. Acta Physica Sinica, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [5] Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Models on threshold voltage/subthreshold swing and structural design of high-k gate dielectric GeOI MOSFET. Acta Physica Sinica, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [6] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [7] Zhao Xiao-Hui, Cai Li, Zhang Peng. A HSPICE model of carbon nanotube field effect transistor. Acta Physica Sinica, 2013, 62(13): 130506. doi: 10.7498/aps.62.130506
    [8] Zhao Xiao-Hui, Cai Li, Zhang Peng. Modeling of carbon nanotube field effect transistor with phonon scattering. Acta Physica Sinica, 2013, 62(10): 100301. doi: 10.7498/aps.62.100301
    [9] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [10] Sun Peng, Du Lei, Chen Wen-Hao, He Liang, Zhang Xiao-Fang. A radiation degradation model of metal-oxide-semiconductor field effect transistor. Acta Physica Sinica, 2012, 61(10): 107803. doi: 10.7498/aps.61.107803
    [11] Li Li, Liu Hong-Xia, Yang Zhao-Nian. Threshold-voltage and hole-sheet-density model of quantum well Si/SiGe/Si p field effect transistor. Acta Physica Sinica, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [12] Zhou Hai-Liang, Chi Ya-Qing, Zhang Min-Xuan, Fang Liang. Performance optimization of carbon nanotube field effect transistors based on stair-case doping strategy. Acta Physica Sinica, 2010, 59(11): 8104-8112. doi: 10.7498/aps.59.8104
    [13] Zhao Qi-Di, Zhang Zhen-Hua. Electronic transport properties of single-walled carbon nanotubes under a low bias. Acta Physica Sinica, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [14] Chen Li-Bing, Tan Peng, Dong Shao-Guang, Lu Hong. Controlled implementation of a nonlocal and open-target destination quantum controlled-Not (CNOT) gate using partially entangled pairs. Acta Physica Sinica, 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] Zhang Wei, Li Meng-Ke, Wei Qiang, Cao Lu, Yang Zhi, Qiao Shuang-Shuang. Fabrication and I-V characteristics of ZnO nanowire-based field effect transistors. Acta Physica Sinica, 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [16] Liu Kui, Ding Hong-Lin, Zhang Xian-Gao, Yu Lin-Wei, Huang Xin-Fan, Chen Kun-Ji. Simulation of a triple-gate single electron FET memory with a quantum dot floating gate and a quantum wire channel. Acta Physica Sinica, 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [17] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. Nanoelectronic logic circuits with carbon nanotube transistors. Acta Physica Sinica, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [18] Xu Zhang-Cheng, Jia Guo-Zhi, Sun Liang, Yao Jiang-Hong, Xu Jing-Jun, J. M. Hvam, Wang Zhan-Guo. Time-resolved photoluminescence of sub-monolayer InGaAs/GaAs quantum-dot-quantum-well heterostructures. Acta Physica Sinica, 2005, 54(11): 5367-5371. doi: 10.7498/aps.54.5367
    [19] Yang Lin-An, Zhang Yi-Men, Yu Chun-Li, Zhang Yu-Ming. Trapping effect modeling for SiC power MESFETs. Acta Physica Sinica, 2003, 52(2): 302-306. doi: 10.7498/aps.52.302
    [20] LI HONG-WEI, WANG TAI-HONG. CURRENT TRANSPORT PROPERTIES OF GaAs SCHOTTKY DIODE CONTAINING InAs SELF-ASSEMBLED QUANTUM DOTS. Acta Physica Sinica, 2001, 50(2): 262-267. doi: 10.7498/aps.50.262
Metrics
  • Abstract views:  1651
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2024
  • Accepted Date:  04 September 2024
  • Available Online:  12 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回