-
The laser-produced Sn plasma light source is a critical component in advanced extreme ultraviolet (EUV) lithography. The power and stability of EUV radiation within a 2% bandwidth centered at 13.5 nm are key indicators that determine success of the entire lithography process .The plasma state parameter distributions and the EUV radiation spectrum for a laser-produced Sn plasma light source are numerically simulated in this work. The radiative opacity of Sn plasma within the 12–16 nm range is calculated using a detailed-level-accounting model in the local thermodynamic equilibrium approximation. Next, the temperature distribution and the electron density distribution of plasma generated by nanosecond laser pulses interacting with both a Sn planar solid target and a liquid droplet target are simulated using the radiation hydrodynamics code for laser-produced plasma, RHDLPP. By combining the radiative opacity data with the plasma state data, the spectral simulation subroutine SpeIma3D is employed to model the spatially resolved EUV spectra for the planar target plasma and the angle-resolved EUV spectra for the droplet target plasma at a 60-degree observation angle. The variation of in-band radiation intensity at 13.5 nm within the 2% bandwidth as a function of observation angle is also analyzed for the droplet-target plasma. The simulated plasma state parameter distributions and EUV spectral results closely match existing experimental data, demonstrating the ability of RHDLPP code to model laser-produced Sn plasma EUV light sources. These findings provide valuable support for the development of EUV lithography and EUV light sources.
-
Keywords:
- extreme ultraviolet lithography light source /
- laser-produced tin plasma /
- radiation hydrodynamics code /
- extreme ultraviolet spectra
-
图 3 不同$ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $下离子电荷态分布的对比结果, 其中红色柱状图代表 LTE条件下基于细致能级的结果(LTE-DLA), 蓝色柱状图代表LTE条件下基于屏蔽氢近似的结果(LTE-SH), 灰色柱状图代表non-LTE条件下基于屏蔽氢近似的结果
Figure 3. Comparison of ion charge state distributions under different $ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $ conditions. The red bar chart represents results based on DLA model under LTE conditions (LTE-DLA), the blue bar chart represents results based on the screened hydrogenic approximation under LTE conditions (LTE-SH), and the gray bar chart represents results based on the screened hydrogenic approximation under non-LTE conditions.
图 5 延迟时间10.5 ns时, 模拟和实验测量的激光Sn等离子体(a)温度和(b)电子密度在距离靶面130, 200, 300 μm 处沿着r轴的分布
Figure 5. Simulated and experimentally measured distributions of laser-produced Sn plasma (a) temperature and (b) electron density along the r-axis are presented at distances of 130, 200, and 300 μm from the target surface, with a delay time of 10.5 ns.
图 9 延迟时间为4, 7, 10, 13 ns时, 模拟得到的Sn液滴等离子体的温度(第一行)和密度(第二行)的二维分布, 图中激光自左向右沿着z轴入射
Figure 9. Two-dimensional distributions of temperature (first row) and density (second row) of Sn droplet plasma, obtained from simulations, when the delay times is 4, 7, 10, and 13 ns. In the panel, the laser propagates along the z-axis from left to right.
图 10 观测视线与激光入射方向成60º角时, 实验测量的[12] (黑色实线)、Torretti等[12]模拟的(红色实线)以及本文利用RHDLPP程序模拟的(蓝色实线) Sn液滴等离子体的EUV光谱
Figure 10. The EUV spectra for the Sn droplet plasma, including the experimentally measured data[12] (black solid line), the simulation by Torretti et al. [12](red solid line), and the simulation performed in this paper using the RHDLPP program (blue solid line). The spectra are observed at a 60º angle relative to the direction of laser incidence.
图 11 Sn液滴等离子体在13.5 nm, 2%带宽内的归一化辐射强度随观测角的变化, 其中红色实心圆表示本文的模拟结果, 蓝色虚线表示拟合曲线
Figure 11. Variation of the normalized radiation intensity of the Sn droplet plasma at 13.5 nm with a 2% bandwidth as a function of the observation angle. The red solid circles represent the simulation results from this paper, while the blue dashed lines correspond to the fitted curves.
表 1 14组$ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $下的比值R、电离温度$ {T}_{Z} $、LTE条件下基于细致能级的平均电荷态$ {\left\langle{Z}\right\rangle}_{{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}-1} $、LTE条件下基于屏蔽氢近似的平均电荷态$ {\left\langle{Z}\right\rangle}_{{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}-2} $及non-LTE条件下基于屏蔽氢近似的平均电荷态$ {\left\langle{Z}\right\rangle}_{{\mathrm{n}}{\mathrm{o}}{\mathrm{n}}-{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}} $
Table 1. Ratios R, ionization temperatures $ {T}_{Z} $, average charge states $ {\left\langle{Z}\right\rangle}_{{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}-1} $ based on DLA model under LTE conditions, $ {\left\langle{Z}\right\rangle}_{{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}-2} $ based on the screened hydrogenic approximation under LTE conditions, and $ {\left\langle{Z}\right\rangle}_{{\mathrm{n}}{\mathrm{o}}{\mathrm{n}}-{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}} $ based on the screened hydrogenic approximation under non-LTE conditions for 14 sets of $ \left({T}_{{\mathrm{e}}}, {n}_{{\mathrm{e}}}\right) $ values.
序号 $ {T}_{{\mathrm{e}}}/ $eV $ {n}_{{\mathrm{e}}} $/cm–3 $ R $ $ {T}_{Z} $/eV $ {\left\langle{Z}\right\rangle}_{{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}-1} $ $ {\left\langle{Z}\right\rangle}_{{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}-2} $ $ {\left\langle{Z}\right\rangle}_{{\mathrm{n}}{\mathrm{o}}{\mathrm{n}}-{\mathrm{L}}{\mathrm{T}}{\mathrm{E}}} $ 1 38 5.10×1020 1.00754 37.72 12.57 12.60 12.60 2 2.05×1020 1.01839 37.31 13.20 13.35 13.34 3 5.97×1019 1.05867 35.89 13.91 14.09 14.08 4 32 5.07×1020 1.00418 31.87 11.10 11.14 11.13 5 1.26×1020 1.01645 31.48 12.39 12.58 12.57 6 5.34×1019 1.03737 30.85 13.17 13.25 13.23 7 28 3.18×1020 1.00418 27.88 10.44 10.41 10.41 8 1.15×1020 1.0114 27.68 11.32 11.46 11.46 9 4.31×1019 1.02944 27.20 12.14 12.39 12.37 10 23 1.00×1020 1.00664 22.85 9.87 9.82 9.81 11 5.26×1019 1.0125 22.72 10.37 10.39 10.38 12 2.23×1019 1.02862 22.36 11.00 11.11 11.10 13 20 4.77×1019 1.00851 19.83 9.40 9.30 9.29 14 1.06×1019 1.0364 19.30 10.42 10.44 10.43 表 2 COWAN计算采用的Sn11+—Sn14+离子的组态列表
Table 2. Configuration list of Sn11+ to Sn14+ ions.
离子 组态 Sn11+ 4s24p6 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p, 4d5s2,
4d5p2, 4d5d2, 4d5p5d };4s24p5 + {4d34f, 4d35p, 4d35f, 4d24f5s,
4d24f5d, 4d25s5p};4s24p4 + {4d5, 4d45s, 4d45d, 4d34f2, 4d34f5p}; 4s24p3 + {4d54f, 4d55p, 4d44f5s, 4d44f5d }; 4s4p6 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p}; 4s4p5 + {4d44f, 4d45p, 4d34f5s, 4d34f5d}. 4s24p6 + {4d24f, 4d25p, 4d25f,
4d4f5s, 4d4f5d, 4d5s5p};4s24p5 + {4d4, 4d35s, 4d35d, 4d24f2, 4d25s2,
4d24f5p, 4d25s5d};4s24p4 + {4d44f, 4d45p, 4d34f5s, 4d34f5d}; 4s24p3 + {4d6, 4d55s, 4d55d, 4d44f2, 4d44f5p}; 4s4p6 + {4d34f, 4d35p, 4d24f5s, 4d24f5d}; 4s4p5 + {4d5, 4d45s, 4d45d, 4d34f2, 4d34f5p}. Sn12+ 4s24p6 + {4d2, 4d5s, 4d5d, 4f2, 4f5p,
5s2, 5p2, 5d2, 5p5d};4s24p5 + {4d24f, 4d25p, 4d25f,
4d4f5s, 4d4f5d, 4d5s5p};4s24p4 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p}; 4s24p3 + {4d44f, 4d45p, 4d34f5s, 4d34f5d}; 4s4p6 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p}; 4s4p5 + {4d34f, 4d35p, 4d24f5s, 4d24f5d}. 4s24p6 + {4d4f, 4d5p, 4d5f, 4f5s, 4f5d, 5s5p}; 4s24p5 + {4d3, 4d25s, 4d25d, 4d4f2,
4d5s2, 4d4f5p, 4d5s5d};4s24p4 + {4d34f, 4d35p, 4d24f5s, 4d24f5d}; 4s24p3 + {4d5, 4d45s, 4d45d, 4d34f2, 4d34f5p}; 4s4p6 + {4d24f, 4d25p, 4d4f5s, 4d4f5d}; 4s4p5 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p}. Sn13+ 4s24p6 + {4d, 5s, 5d}; 4s24p5 + {4d4f, 4d5p, 4d5f, 4f5s, 4f5d, 5s5p}; 4s24p4 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p}; 4s24p3 + {4d34f, 4d35p, 4d24f5s, 4d24f5d}; 4s4p6 + {4d2, 4d5s, 4d5d, 4f2, 4f5p}; 4s4p5 + {4d24f, 4d25p, 4d4f5s, 4d4f5d}. 4s24p6 + {4f, 5p, 5f}; 4s24p5 + {4d2, 4d5s, 4d5d, 4f2, 5s2, 4f5p, 5s5d}; 4s24p4 + {4d24f, 4d25p, 4d4f5s, 4d4f5d}; 4s24p3 + {4d4, 4d35s, 4d35d, 4d24f2, 4d24f5p}; 4s4p6 + {4d4f, 4d5p, 4f5s, 4f5d}; 4s4p5 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p}. Sn14+ 4s24p6; 4s24p5 + {4f, 5p, 5f}; 4s24p4 + {4d2, 4d5s, 4d5d, 4f2, 4f5p}; 4s24p3 + {4d24f, 4d25p, 4d4f5s, 4d4f5d}; 4s4p6 + {4d, 5s, 5d}; 4s4p5 + {4d4f, 4d5p, 4f5s, 4f5d}. 4s24p5 + {4d, 5s, 5d}; 4s24p4 + {4d4f, 4d5p, 4f5s, 4f5d}; 4s24p3 + {4d3, 4d25s, 4d25d, 4d4f2, 4d4f5p}; 4s4p6 + {4f, 5p}; 4s4p5 + {4d2, 4d5s, 4d5d, 4f2, 4f5p}. -
[1] Bakshi V 2023 Photon Sources for Lithography and Metrology (Washington: SPIE Press
[2] Bakshi V 2018 EUV Lithography (2nd Ed. ) (Washington: SPIE Press
[3] 林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰, 冷雨欣 2022 激光与光电子学进展 59 0922002Google Scholar
Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng X Y 2022 Laser Optoelectron. Prog. 59 0922002Google Scholar
[4] Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar
[5] Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2021 J. Opt. 24 054014
[6] Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar
[7] Schupp R, Behnke L, Sheil J, Bouza Z, Bayraktar M, Ubachs W, Hoekstra R, Versolato O O 2021 Phys. Rev. Res. 3 013294Google Scholar
[8] Schupp R, Behnke L, Bouza Z, Mazzotta Z, Mostafa Y, Lassise A, Poirier L, Sheil J, Bayraktar M, Ubachs W 2021 J. Phys. D Appl. Phys. 54 365103Google Scholar
[9] Hemminga D J, Versolato O O, Sheil J 2023 Phys. Plasmas 30 033301Google Scholar
[10] Hernandez-Rueda J, Liu B, Hemminga D J, Mostafa Y, Meijer R A, Kurilovich D, Basko M, Gelderblom H, Sheil J, Versolato O O 2022 Phys. Rev. Res. 4 013142Google Scholar
[11] Meijer R A, Kurilovich D, Eikema K S E, Versolato O O, Witte S 2022 J. Appl. Phys. 131 105905Google Scholar
[12] Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Comm. 11 2334Google Scholar
[13] Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002Google Scholar
[14] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar
Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar
[15] Colgan J, Kilcrease D P, Abdallah Jr J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133Google Scholar
[16] Sasaki A 2024 Appl. Phys. Lett. 124 064104Google Scholar
[17] Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar
[18] Pan Y, Tomita K, Sunahara A, Sasaki A, Nishihara K 2023 Appl. Phys. Lett. 123 204103Google Scholar
[19] Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017 Sci. Rep. 7 45212Google Scholar
[20] Basko M M, Sasorov P V , Murakami M, Novikov V G , Grushin A S 2012 Plasma Phys. Control. Fusion. 54 055003
[21] Nishihara K, Sunahara A, Sasaki A, Nunami M, Tanuma H, Fujioka S, Shimada Y, Fujima K, Furukawa H, Kato T, Koike F, More R, Murakami M, Nishikawa T, Zhakhovskii V, Gamata K, Takata A, Ueda H, Nishikawa T, Lzawa Y, Miyanaga N, Mima K 2008 Phys. Plasmas 15 056708Google Scholar
[22] Sizyuk T, Hassanein A 2015 Phys. Plasmas 22 093101Google Scholar
[23] Koshelev K N, Ivanov V V, Noivkov V G, Medvedev V, Grushin A S, KrivtsunV M 2012 J. Micro. Nanolith. Mems. 11 021112
[24] Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Comput. Phys. Commun. 302 109242Google Scholar
[25] Castor J J 2004 Radiation Hydrodynamics (Cambridge: Cambridge University Press
[26] Morel J E 2000 J. Quant. Spectrosc. Radiat. Transf. 65 769Google Scholar
[27] More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar
[28] Nikiforov A F, Novikov V G, Uvarov V B 2005 Quantum-Statistical Models of Hot Dense Matter and Methods for Computation Opacity and Equation of State (Basel: Birkhauser Verlag
[29] Heltemes T A, Moses G A 2012 Comput. Phys. Commun. 183 2629Google Scholar
[30] Faik S, Tauschwitz A, Iosilevskiy I 2018 Comput. Phys. Commun. 227 117Google Scholar
[31] Young D A, Corey E M 1995 J. Appl. Phys. 78 3748Google Scholar
[32] Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energ. Dens. Phys. 1 3Google Scholar
[33] Min Q, Shen R Z, Su M G, Lu H D, He S Q, Liu X B, Li Y, Tao Q Q, Wu Y H, Sun D X, Cao S Q, Dong C Z 2022 J. Phys. D: Appl. Phys. 55 505205Google Scholar
[34] Magee N H, Abdallah J, Jr., Clark R E H, Cohen J S, Collins L A, Csanak G, Fontes C J, Gauger A, Keady J J, Kilcrease D P, Merts A L 1995 Astronomical Society of the Pacific Conference Series 78 51
[35] He S Q, Min Q, Wu Y H, Liu X B, He C W, Cao S Q, Pan Q K, Guo J, Chen F, Zhang D H, Su M G, Dong C Z 2024 Opt. Express 32 17088Google Scholar
[36] Rodríguez R, Florido R, Gil JM, Rubiano JG, Martel P, Mínguez E 2008 Laser Part. Beams 26 433Google Scholar
[37] Yan G P, Gao C, Hou Y, Jin F T, Li Y J, Zeng J L, Yuan J M 2024 Phys. Plasmas 31 093303Google Scholar
[38] Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar
[39] Busquet M 1993 Phys. Fluids B 5 11
[40] Busquet M, Colombant D, Klapisch M, Fyfe D, Gardner J 2009 High Energ. Dens. Phys. 5 270Google Scholar
[41] Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B At. Mol. Opt. 54 035002Google Scholar
[42] Cowan R D 1981 The Theory of Atomic Structure and Spectra (California: University of California Press
[43] Schupp R, Torretti F, Meijer R A, Bayraktar M, Scheers J, Kurilovich D, Bayerle A, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato1 O O 2019 Phys. Rev. Appl. 12 014010Google Scholar
Metrics
- Abstract views: 230
- PDF Downloads: 18
- Cited By: 0